Home RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
Article
Licensed
Unlicensed Requires Authentication

RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.

  • El-Sayed Abdel-Hameed EMAIL logo , Salih Bazaid and Mohamed Shohayeb
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

Previous work revealed that the defatted methanol (MeOH) extract of fruits of Conocarpus erectus L. (Combretaceae family) exhibited antioxidant, antibacterial and anti-cancer activities. In further studies of this valuable plant, the defatted MeOH extract of C. erectus fruits was subjected to chromatographic fractionation in a silica gel glass column followed by reversed-phase high-performance liquid chromatography-ultraviolet-electrospray ionisation spectrometry analysis (RP-HPLC-UV-ESI-MS). The major and sharp peaks in each sample were identified or tentatively identified based on matching with some standard compounds and a review of the literature. Ellagic acid, vescalagin/castalagin isomer and di-(hexahydroxy diphenoyl) galloyl hexose isomer were tentatively identified as major components with many hydrolysable types of tannins on the basis of a comparison of its mass patterns with relevant items in the literature. Gallic acid, kaempferol 3-O-β-d-glucopyranoside and quercetin 3-O-β-d-glucopyranoside were identified on the basis of matching retention time (t R) and mass spectra with the standards. Polymethoxylated flavonoid isomers were also tentatively identified. The antioxidant properties of all samples were found to be associated with the total content of phenolic compounds. This may be considered as the first detailed phytochemical report in identifying the phytochemicals in C. erectus fruits. Due to the high antioxidant activity exhibited by both the crude MeOH extract and its fractions, it could be used as an effective natural antioxidant after further in vitro and in vivo studies.

[1] Abad-García, B., Berrueta, L. A., Garmón-Lobato, S., Gallo, B., & Vicente, F. (2009). A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216, 5398–5415. DOI: 10.1016/j.chroma.2009.05.039. http://dx.doi.org/10.1016/j.chroma.2009.05.03910.1016/j.chroma.2009.05.039Search in Google Scholar PubMed

[2] Abdel-Hameed, E. S. S., Bazaid, S. A., Shohayeb, M. M., El-Sayed, M. M., & El-Wakil, E. A. (2012). Phytochemical studies and evaluation of antioxidant, anticancer and antimicrobial properties of Conocarpus erectus L. growing in Taif, Saudi Arabia. European Journal of Medicinal Plants, 2, 93–112. http://dx.doi.org/10.9734/EJMP/2012/104010.9734/EJMP/2012/1040Search in Google Scholar

[3] Admiczeski, M., Ni, J. X., Jaber, H., Huang, J. S., Kang, R., & Nakatsu, T. (1992). A novel hydrolyzable tannin and related compounds isolated from the leaf surface of Chrysolepis sempervirens. Journal of Natural Products, 55, 521–524. DOI: 10.1021/np50082a024. http://dx.doi.org/10.1021/np50082a02410.1021/np50082a024Search in Google Scholar

[4] Adonizio, A. L. (2008). Anti-quorum sensing agents from south florida medicinal plants and their attenuation of Pseudomonas aeruginosa pathogenicity. Ph.D. thesis, Florida International University, Miami, FL, USA. Search in Google Scholar

[5] Barbosa, W. L. R., Peres, A., Gallori, S., & Vincieri, F. F. (2006). Determination of myricetin derivatives in Chrysobalanus icaco L. (Chrysobalanaceae). Revista Brasileira de Farmacognosia, 16, 333–337. DOI: 10.1590/s0102-695x2006000300009. http://dx.doi.org/10.1590/S0102-695X200600030000910.1590/S0102-695X2006000300009Search in Google Scholar

[6] Barry, K. M., Davies, N. W., & Mohammed, C. L. (2001). Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by high performance liquid chromatography-electrospray ionisation mass spectrometry. Phytochemical Analysis, 12, 120–127. DOI: 10.1002/pca.548. http://dx.doi.org/10.1002/pca.54810.1002/pca.548Search in Google Scholar PubMed

[7] Del Bubba, M., Checchini, L., Chiuminatto, U., Doumett, S., Fibbi, D., & Giordani, E. (2012). Liquid chromatographic/electrospray ionization tandem mass spectrometric study of polyphenolic composition of four cultivars of Fragaria vesca L. berries and their comparative evaluation. Journal of Mass Spectrometry, 47, 1207–1220. DOI: 10.1002/jms.3030. http://dx.doi.org/10.1002/jms.303010.1002/jms.3030Search in Google Scholar PubMed

[8] Fernandes, A., Sousa, A., Mateus, N., Cabral, M., & de Freitas, V. (2011). Analysis of phenolic compounds in cork from Quercus suber L. by HPLC-DAD/ESI-MS. Food Chemistry, 125, 1398–1405. DOI: 10.1016/j.foodchem.2010.10.016. http://dx.doi.org/10.1016/j.foodchem.2010.10.01610.1016/j.foodchem.2010.10.016Search in Google Scholar

[9] Fischer, U. A., Carle, R., & Kammerer, D. R. (2011). Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chemistry, 127, 807–821. DOI 10.1016/j.foodchem.2010.12.156. http://dx.doi.org/10.1016/j.foodchem.2010.12.15610.1016/j.foodchem.2010.12.156Search in Google Scholar PubMed

[10] Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., Kärenlampi, S., & Aharoni, A. (2008). Nontargeted analysis of spatial metabolite composition in strawberry (Fragaria × ananassa) flowers. Phytochemistry, 69, 2463–2481. DOI: 10.1016/j.phytochem.2008.07.009. http://dx.doi.org/10.1016/j.phytochem.2008.07.00910.1016/j.phytochem.2008.07.009Search in Google Scholar PubMed

[11] Kassima, M., Achoui, M., Mustafa, M. R., Mohd, M. A., & Yusoff, K. M. (2010). Ellagic acid, phenolic acids and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutrition Research, 30, 650–659. DOI: 10.1016/j.nutres.2010.08.008. http://dx.doi.org/10.1016/j.nutres.2010.08.00810.1016/j.nutres.2010.08.008Search in Google Scholar PubMed

[12] Liu, G. Z., Ma, J. Y., Chen, Y. Z., Tian, Q. Q., Shen, Y., Wang, X. S., Chen, B., & Yao, S. Z. (2009). Investigation of flavonoid profile of Scutellaria bacalensis Georgi by high performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. Journal of Chromatography A, 1216, 4809–4814. DOI: 10.1016/j.chroma.2009.04.021. http://dx.doi.org/10.1016/j.chroma.2009.04.02110.1016/j.chroma.2009.04.021Search in Google Scholar

[13] Mämmel Vartianen, T. (2000). Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. Journal of Chromatography A, 891, 75–83. DOI: 10.1016/s0021-9673(00)00624-5. http://dx.doi.org/10.1016/S0021-9673(00)00624-510.1016/S0021-9673(00)00624-5Search in Google Scholar

[14] Nahla, A. A. (2010). A trimethoxyellagic acid glucuronide from Conocarpus erectus leaves: Isolation, characterization and assay of antioxidant capacity. Pharmaceutical Biology, 48, 328–332. DOI: 10.3109/13880200903131567. http://dx.doi.org/10.3109/1388020090313156710.3109/13880200903131567Search in Google Scholar PubMed

[15] Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology, 7, 1797–1806. DOI: 10.5897/ajb07.613. 10.5897/AJB07.613Search in Google Scholar

[16] Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981–2002. Journal of Natural Products, 66, 1022–1037. DOI: 10.1021/np030096l. http://dx.doi.org/10.1021/np030096l10.1021/np030096lSearch in Google Scholar PubMed

[17] Pfundstein, B., El Desouky, S. K., Hull, W. E., Haubner, R., Erben, G., & Owen, R. W. (2010). Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): Characterization, quantitation and determination of antioxidant capacities. Phytochemistry, 71, 1132–1148. DOI: 10.1016/j.phytochem.2010.03.018. http://dx.doi.org/10.1016/j.phytochem.2010.03.01810.1016/j.phytochem.2010.03.018Search in Google Scholar PubMed

[18] Puech, J. L., Mertz, C., Michon, V., Le Guernevé, C., Doco, T., & du Penhoat, C. H. (1999). Evolution of castalagin and vescalagin in ethanol solutions. Identification of new derivatives. Journal of Agricultural and Food Chemistry, 47, 2060–2066. DOI: 10.1021/jf9813586. http://dx.doi.org/10.1021/jf981358610.1021/jf9813586Search in Google Scholar PubMed

[19] Regazzoni, L., Arlandini, E., Garzon, D., Santagati, N. A., Beretta, G., & Facino, R. M. (2013). A rapid profiling of gallotannins and flavonoids of the aqueous extract of Rhus coriaria L. by flow injection analysis with high-resolution mass spectrometry assisted with database searching. Journal of Pharmaceutical and Biomedical Analysis, 72, 202–207. DOI: 10.1016/j.jpba.2012.08.017. http://dx.doi.org/10.1016/j.jpba.2012.08.01710.1016/j.jpba.2012.08.017Search in Google Scholar PubMed

[20] Romani, A., Campo, M., & Pinelli, P. (2012). HPLC/DAD/ESIMS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species. Food Chemistry, 130, 214–221. DOI: 10.1016/j.foodchem.2011.07.009. http://dx.doi.org/10.1016/j.foodchem.2011.07.00910.1016/j.foodchem.2011.07.009Search in Google Scholar

[21] Scordino, M., Sabatino, L., Traulo, P., Gargano, M., Pantó, V., & Gagliano, G. (2011). HPLC-PDA/ESI-MS/MS detection of polymethoxylated flavones in highly degraded citrus juice: A quality control case study. European Food Research and Technology, 232, 275–280. DOI: 10.1007/s00217-010-1386-4. http://dx.doi.org/10.1007/s00217-010-1386-410.1007/s00217-010-1386-4Search in Google Scholar

[22] Seeram, N. P., Lee, R., Scheuller, H. S., & Heber, D. (2006). Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chemistry, 97, 1–11. DOI: 10.1016/j.foodchem.2005.02.047. http://dx.doi.org/10.1016/j.foodchem.2005.02.04710.1016/j.foodchem.2005.02.047Search in Google Scholar

[23] Sudjaroen, Y., Hull, W. E., Erben, G., Würtele, G., Changbumrung, S., Ulrich, C. M., & Owen, R. W. (2012). Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds. Phytochemistry, 77, 226–237. DOI: 10.1016/j.phytochem.2011.12.008. http://dx.doi.org/10.1016/j.phytochem.2011.12.00810.1016/j.phytochem.2011.12.008Search in Google Scholar

[24] Tsuda, T., Watanabe, M., Ohshima, K., Yamamoto, A., Kawakishi, S., & Osawa, T. (1994). Antioxidative components isolated from the seed of Tamarind (Tamarindus indica L.). Journal of Agricultural and Food Chemistry, 42, 2671–2674. DOI: 10.1021/jf00048a004. http://dx.doi.org/10.1021/jf00048a00410.1021/jf00048a004Search in Google Scholar

[25] Vivas, N., Glories, Y., Bourgeois, G., & Vitry, C. (1996). The heartwood ellagitannins of different oak (Quercus sp.) and chestnut species (Castanea sativa Mill.). Quantity analysis of red wines aging in barrels. Journal des Sciences et Techniques de la Tonnellerie, 2, 51–75. Search in Google Scholar

[26] Zhang, J. Y., Li, N., Che, Y. Y., Zhang, Y., Liang, S. X., Zhao, M. B., Jiang, Y., & Tu, P. F. (2011). Characterization of seventy polymethoxylated flavonoids (PMFs) in the leaves of Murraya paniculata by on-line high-performance liquid chromatography coupled to photodiode array detection and electrospray tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 56, 950–961. DOI: 10.1016/j.jpba.2011.08.019. http://dx.doi.org/10.1016/j.jpba.2011.08.01910.1016/j.jpba.2011.08.019Search in Google Scholar

[27] Zhu, Z. Y., Zhang, H., Zhao, L., Dong, X., Li, X., Chai, Y. F., & Zhang, G. Q. (2007). Rapid separation and identification of phenolic and diterpenoid constituents from radix Salvia miltiorrhizae by high-performance liquid chromatography diodearray detection, electrospray ionization time-of-flight mass spectrometry and electrospray ionization quadrupole ion trap mass spectrometry. Rapid Communication of Mass Spectrometry, 21, 1855–1865. DOI: 10.1002/rcm.3023. http://dx.doi.org/10.1002/rcm.302310.1002/rcm.3023Search in Google Scholar

[28] Zywicki, B., Reemtsma, T., & Jekel, M. (2002). Analysis of commercial vegetable tanning agents by reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry and its application to wastewater. Journal of Chromatography A, 970, 191–200. DOI: 10.1016/s0021-9673(02)00883-x. http://dx.doi.org/10.1016/S0021-9673(02)00883-X10.1016/S0021-9673(02)00883-XSearch in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0570-6/html?lang=en
Scroll to top button