Startseite Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets

  • Manoj Pudukudy EMAIL logo und Zahira Yaakob
Veröffentlicht/Copyright: 15. April 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mesoporous spinel Co3O4 nanosheets were synthesised via a simple sol-gel route using the Pluronic P123 triblock copolymer as the stabilising agent. Their structural, morphological, and textural properties were characterised. FTIR spectrum revealed the formation of cobalt oxide without any surface adsorbed impurities. Face centered cubic phase of spinel Co3O4 with the mean crystalline size of 26 nm was assigned by the X-ray diffraction analysis without the formation of other phases. Porous nanosheets and cave-like morphologies were identified from the scanning electron microscopy (SEM) images. Highly agglomerated more or less spherical particles with well separated lattice fringes, representing the oriented growth of nanocrystals, were noticed on the transmission electron microscopy photographs. Surface area analysis revealed that the spinel has high surface area of about 25 m2 g−1 with monomodal mesoporosity. The average pore size distribution was found to be about 15.8 nm. The as-prepared spinel photocatalyst showed a mild photocatalytic activity in the degradation of methylene blue (2.5 mg L−1) under UV light irradiation with air as the oxidising agent. Photocatalytic activity of the as-prepared reusable Co3O4 was found to be higher than that of the commercial spinel powder.

[1] Alavi, M. A., & Morsali, A. (2011). Alkaline-earth metal carbonate, hydroxide and oxide nano-crystals synthesis methods, size and morphologies consideration. In Y. Masuda (Ed.), Nanocrystal (Chapter 9, pp. 237–262). Rijeka, Croatia: InTech. DOI: 10.5772/16431. 10.5772/16431Suche in Google Scholar

[2] Ameen, S., Akhtar, M. S., Kim, Y. S., Yang, O. B., & Shin, H. S. (2010). Synthesis and characterization of novel poly(1-naphthylamine)/zinc oxide nanocomposites: Application in catalytic degradation of methylene blue dye. Colloid and Polymer Science, 288, 1633–1638. DOI: 10.1007/s00396-010-2284-9. http://dx.doi.org/10.1007/s00396-010-2284-910.1007/s00396-010-2284-9Suche in Google Scholar

[3] Ando, M., Kobayashi, T., Iijima, S., & Haruta, M. (1997). Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films. Journal of Materials Chemistry, 7, 1779–1783. DOI: 10.1039/a700125h. http://dx.doi.org/10.1039/a700125h10.1039/a700125hSuche in Google Scholar

[4] Antolini, E. (1997). Formation of lithium-cobalt spinel oxide (LixCo3−x O4) by solid-state reaction of a Li2CO3-Co3O4 powder mixture. Materials Research Bulletin, 32, 9–14. DOI: 10.1016/s0025-5408(96)00166-3. http://dx.doi.org/10.1016/S0025-5408(96)00166-310.1016/S0025-5408(96)00166-3Suche in Google Scholar

[5] Armelao, L., Barreca, D., Gross, S., Martucci, A., Tieto, M., & Tondello, E. (2001). Cobalt oxide-based films: sol-gel synthesis and characterization. Journal of Non-Crystalline Solids, 293-295, 477–482. DOI: 10.1016/s0022-3093(01)00753-0. http://dx.doi.org/10.1016/S0022-3093(01)00753-010.1016/S0022-3093(01)00753-0Suche in Google Scholar

[6] Bai, P., Wu, P., Yan, Z., Zhou, J., & Zhao, X. S. (2007). Selfassembly of clew-like ZnO superstructures in the presence of copolymer. Journal of Physical Chemistry C, 111, 9729–9733. DOI: 10.1021/jp0713256. http://dx.doi.org/10.1021/jp071325610.1021/jp0713256Suche in Google Scholar

[7] Barreca, D., Massignan, C., Daolio, S., Fabrizio, M., Piccirillo, C., Armelao, L., & Tondello, E. (2001). Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chemistry of Materials, 13, 588–593. DOI: 10.1021/cm001041x. http://dx.doi.org/10.1021/cm001041x10.1021/cm001041xSuche in Google Scholar

[8] Binitha, N. N., Suraja, P. V., Yaakob, Z., Resmi, M. R., & Silija, P. P. (2010). Simple synthesis of Co3O4 nanoflakes using a low temperature sol-gel method suitable for photodegradation of dyes. Journal of Sol-Gel Science and Technology, 53, 466–469. DOI: 10.1007/s10971-009-2098-8. http://dx.doi.org/10.1007/s10971-009-2098-810.1007/s10971-009-2098-8Suche in Google Scholar

[9] Brinker, C. J., & Scherer, G. W. (1990). Sol-gel science: The physics and chemistry of sol-gel processing. San Diego, CA, USA: Academic Press. Suche in Google Scholar

[10] Cao, D., Chao, J., Sun, L., & Wang, G. (2008). Catalytic behavior of Co3O4 in electroreduction of H2O2. Journal of Power Sources, 179, 87–91. DOI: 10.1016/j.jpowsour.2007.12.076. http://dx.doi.org/10.1016/j.jpowsour.2007.12.07610.1016/j.jpowsour.2007.12.076Suche in Google Scholar

[11] Chen, Y., Hu, L., Wang, M., Min, Y., & Zhang, Y. (2009). Self-assembled Co3O4 porous nanostructures and their photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 336, 64–68. DOI: 10.1016/j.colsurfa.2008.11.018. http://dx.doi.org/10.1016/j.colsurfa.2008.11.01810.1016/j.colsurfa.2008.11.018Suche in Google Scholar

[12] Cheng, C. S., Serizawa, M., Sakata, H., & Hirayama, T. (1998). Electrical conductivity of Co3O4 films prepared by chemical vapour deposition. Materials Chemistry and Physics, 53, 225–230. DOI: 10.1016/s0254-0584(98)00044-3. http://dx.doi.org/10.1016/S0254-0584(98)00044-310.1016/S0254-0584(98)00044-3Suche in Google Scholar

[13] El Baydi, M., Poillerat, G., Rehspringer, J. L., Gautier, J. L., Koenig, J. F., & Chartier, P. (1994). A sol-gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. Journal of Solid State Chemistry, 109, 281h–288. DOI: 10.1006/jssc.1994.1105. http://dx.doi.org/10.1006/jssc.1994.110510.1006/jssc.1994.1105Suche in Google Scholar

[14] Flodström, K., Wennerström, H., & Alfredsson, V. (2004). Mechanism of mesoporous silica formation. A time-resolved NMR and TEM study of silica-block copolymer aggregation. Langmuir, 20, 680–688. DOI: 10.1021/la030173c. http://dx.doi.org/10.1021/la030173c10.1021/la030173cSuche in Google Scholar PubMed

[15] Fouad, O. A., Makhlouf, S. A., Ali, G. A. M., & El-Sayed, A. Y. (2011). Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Materials Chemistry and Physics, 128, 70–76. DOI: 10.1016/j.matchemphys.2011.02.072. http://dx.doi.org/10.1016/j.matchemphys.2011.02.07210.1016/j.matchemphys.2011.02.072Suche in Google Scholar

[16] Fu, L. J., Liu, H., Li, C., Wu, Y. P., Rahm, E., Holze, R., & Wu, H. Q. (2005). Electrode materials for lithium secondary batteries prepared by sol-gel methods. Progress in Materials Science, 50, 881–928. DOI: 10.1016/j.pmatsci.2005.04.002. http://dx.doi.org/10.1016/j.pmatsci.2005.04.00210.1016/j.pmatsci.2005.04.002Suche in Google Scholar

[17] Gu, F., Li, C., Hu, Y., & Zhang, L. (2007). Synthesis and optical characterization of Co3O4 nanocrystals. Journal of Crystal Growth, 304, 369–373. DOI: 10.1016/j.jcrysgro.2007.03.040. http://dx.doi.org/10.1016/j.jcrysgro.2007.03.04010.1016/j.jcrysgro.2007.03.040Suche in Google Scholar

[18] Gupta, V. K., Jain, R., Agarwal, S., & Shrivastava, M. (2011). Kinetics of photo-catalytic degradation of hazardous dye Tropaeoline 000 using UV/TiO2 in a UV reactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378, 22–26. DOI: 10.1016/j.colsurfa.2011.01.046. http://dx.doi.org/10.1016/j.colsurfa.2011.01.04610.1016/j.colsurfa.2011.01.046Suche in Google Scholar

[19] Han, O. H., & Bae, Y. K. (2008). Solid-state NMR study on the structure and dynamics of triblock copolymer P123 remaining in SBA-15 after solvent washing. Bulletin of the Korean Chemical Society, 29, 911–912. DOI: 10.5012/bkcs.2008.29.5.911. http://dx.doi.org/10.5012/bkcs.2008.29.5.91110.5012/bkcs.2008.29.5.911Suche in Google Scholar

[20] Han, C., Ge, L., Chen, C., Li, Y., Xiao, X., Zhang, Y., & Guo, L. (2014). Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental, 147, 546–553. DOI: 10.1016/j.apcatb.2013.09.038. http://dx.doi.org/10.1016/j.apcatb.2013.09.03810.1016/j.apcatb.2013.09.038Suche in Google Scholar

[21] Hazra, S., Ghosh, A., & Chakravorty, D. (1996). Classical hopping in sol-gel cobalt silicate glass. Journal of Physics: Condensed Matter, 8, 10279–10284. DOI: 10.1088/0953-8984/8/49/018. 10.1088/0953-8984/8/49/018Suche in Google Scholar

[22] He, G., Li, J., Chen, H., Shi, J., Sun, X., Chen, S., & Wang, X. (2012). Hydrothermal preparation of Co3O4@graphene nanocomposite for supercapacitor with enhanced capacitive performance. Materials Letters, 82, 61–63. DOI: 10.1016/j.matlet.2012.05.048. http://dx.doi.org/10.1016/j.matlet.2012.05.04810.1016/j.matlet.2012.05.048Suche in Google Scholar

[23] Herney-Ramirez, J., Vicente, M. A., & Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98, 10–26. DOI: 10.1016/j.apcatb.2010.05.004. http://dx.doi.org/10.1016/j.apcatb.2010.05.00410.1016/j.apcatb.2010.05.004Suche in Google Scholar

[24] Herrmann, J. M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53, 115–129. DOI: 10.1016/s0920-5861(99)00107-8. http://dx.doi.org/10.1016/S0920-5861(99)00107-810.1016/S0920-5861(99)00107-8Suche in Google Scholar

[25] Kim, C., Kwon, H. H., Song, I. K., Sung, Y. E., Chung, W. S., & Lee, H. I. (2007). Preparation of PtRu nanoparticles on various carbon supports using surfactants and their catalytic activities for methanol electro-oxidation. Journal of Power Sources, 171, 404–411. DOI: 10.1016/j.jpowsour.2007.05.109. http://dx.doi.org/10.1016/j.jpowsour.2007.05.10910.1016/j.jpowsour.2007.05.109Suche in Google Scholar

[26] Lam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2013). Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation. Chemical Papers, 67, 1277–1284. DOI: 10.2478/s11696-013-0395-8. http://dx.doi.org/10.2478/s11696-013-0395-810.2478/s11696-013-0395-8Suche in Google Scholar

[27] Lee, Y. C., Hu, S. Y., Water, W., Tiong, K. K., Feng, Z. C., Chen, Y. T., Huang, J. C., Lee, J. W., Huang, C. C., Shen, J. L., & Cheng, M. H. (2009). Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates. Journal of Luminescence, 129, 148–152. DOI: 10.1016/j.jlumin.2008.09.003. http://dx.doi.org/10.1016/j.jlumin.2008.09.00310.1016/j.jlumin.2008.09.003Suche in Google Scholar

[28] Li, G., Zhao, X. S., & Ray, M. B. (2007). Advanced oxidation of orange II using TiO2 supported on porous adsorbents: The role of pH, H2O2 and O3. Separation and Purification Technology, 55, 91–97. DOI: 10.1016/j.seppur.2006.11.003. http://dx.doi.org/10.1016/j.seppur.2006.11.00310.1016/j.seppur.2006.11.003Suche in Google Scholar

[29] Li, L., Chu, Y., Liu, Y., Song, J., Wang, D., & Du, X. (2008). A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Materials Letters, 62, 1507–1510. DOI: 10.1016/j.matlet.2007.09.012. http://dx.doi.org/10.1016/j.matlet.2007.09.01210.1016/j.matlet.2007.09.012Suche in Google Scholar

[30] Li, Y., Zhao, J., Dan, Y., Ma, D., Zhao, Y., Hou, S., Lin, B., & Wang, Z. (2011). Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chemical Engineering Journal, 166, 428–434. DOI: 10.1016/j.cej.2010.10.080. http://dx.doi.org/10.1016/j.cej.2010.10.08010.1016/j.cej.2010.10.080Suche in Google Scholar

[31] Lin, S., Su, G., Zheng, M., Ji, D., Jia, M., & Liu, Y. (2012). Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1,2,4-trichlorobenzene. Applied Catalysis B: Environmental, 123–124, 440–447. DOI: 10.1016/j.apcatb.2012.05.011. http://dx.doi.org/10.1016/j.apcatb.2012.05.01110.1016/j.apcatb.2012.05.011Suche in Google Scholar

[32] Ling, S. K., Wang, S., & Peng, Y. (2010). Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. Journal of Hazardous Materials, 178, 385–389. DOI: 10.1016/j.jhazmat.2010.01.091. http://dx.doi.org/10.1016/j.jhazmat.2010.01.09110.1016/j.jhazmat.2010.01.091Suche in Google Scholar

[33] Lou, X., Han, J., Chu, W., Wang, X., & Cheng, Q. (2007). Synthesis and photocatalytic property of Co3O4 nanorods. Materials Science and Engineering B, 137, 268–271. DOI: 10.1016/j.mseb.2006.12.002. http://dx.doi.org/10.1016/j.mseb.2006.12.00210.1016/j.mseb.2006.12.002Suche in Google Scholar

[34] Ma, J., Zhang, S., Liu, W., & Zhao, Y. (2010). Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder. Journal of Alloys and Compounds, 490, 647–651. DOI: 10.1016/j.jallcom.2009.10.126. http://dx.doi.org/10.1016/j.jallcom.2009.10.12610.1016/j.jallcom.2009.10.126Suche in Google Scholar

[35] Makhlouf, S. A., Bakr, Z. H., Aly, K. I., & Moustafa, M. S. (2013). Structural, electrical and optical properties of Co3O4 nanoparticles. Superlattices and Microstructures, 64, 107–117. DOI: 10.1016/j.spmi.2013.09.023. http://dx.doi.org/10.1016/j.spmi.2013.09.02310.1016/j.spmi.2013.09.023Suche in Google Scholar

[36] Manova, E., Tsoncheva, T., Paneva, D., Mitov, I., Tenchev, K., & Petrov, L. (2004). Mechanochemically synthesized nano-dimensional iron-cobalt spinel oxides as catalysts for methanol decomposition. Applied Catalysis A: General, 277, 119–127. DOI: 10.1016/j.apcata.2004.09.002. http://dx.doi.org/10.1016/j.apcata.2004.09.00210.1016/j.apcata.2004.09.002Suche in Google Scholar

[37] Maruyama, T., & Arai, S. (1996). Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition. Journal of the Electrochemical Society, 143, 1383–1386. DOI: 10.1149/1.1836646. http://dx.doi.org/10.1149/1.183664610.1149/1.1836646Suche in Google Scholar

[38] Meher, S. K., & Rao, G. R. (2011). Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. The Journal of Physical Chemistry C, 115, 25543–25556. DOI: 10.1021/jp209165v. http://dx.doi.org/10.1021/jp209165v10.1021/jp209165vSuche in Google Scholar

[39] Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–17. DOI: 10.1016/s1010-6030(97)00118-4. http://dx.doi.org/10.1016/S1010-6030(97)00118-410.1016/S1010-6030(97)00118-4Suche in Google Scholar

[40] Nagaveni, K., Sivalingam, G., Hegde, M. S., & Madras, G. (2004). Solar photocatalytic degradation of dyes: high activity of combustion synthesised nano TiO2. Applied Catalysis B: Environmental, 48, 83–93. DOI: 10.1016/j.apcatb.2003.09.013. http://dx.doi.org/10.1016/j.apcatb.2003.09.01310.1016/j.apcatb.2003.09.013Suche in Google Scholar

[41] Oh, S. W., Bang, H. J., Bae, Y. C., & Sun, Y. K. (2007). Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. Journal of Power Sources, 173, 502–509. DOI: 10.1016/j.jpowsour.2007.04.087. http://dx.doi.org/10.1016/j.jpowsour.2007.04.08710.1016/j.jpowsour.2007.04.087Suche in Google Scholar

[42] Pal, J., & Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Materials Characterization, 61, 575–579. DOI: 10.1016/j.matchar.2010.02.017. http://dx.doi.org/10.1016/j.matchar.2010.02.01710.1016/j.matchar.2010.02.017Suche in Google Scholar

[43] Pudukudy, M., & Yaakob, Z. (2013). Hydrothermal synthesis of mesostructured ZnO micropyramids with enhanced photocatalytic performance. Superlattices and Microstructures, 63, 47–57. DOI: 10.1016/j.spmi.2013.08.007. http://dx.doi.org/10.1016/j.spmi.2013.08.00710.1016/j.spmi.2013.08.007Suche in Google Scholar

[44] Pudukudy, M., Yaakob, Z., Narayanan, B., Gopalakrishnan, A., & Tasirin, S. M. (2013). Facile synthesis of bimodal mesoporous spinel Co3O4 nanomaterials and their structural properties. Superlattices and Microstructures, 64, 15–26. DOI: 10.1016/j.spmi.2013.09.012. http://dx.doi.org/10.1016/j.spmi.2013.09.01210.1016/j.spmi.2013.09.012Suche in Google Scholar

[45] Pudukudy, M., & Yaakob, Z. (2014). Facile solid state synthesis of ZnO hexagonal nanogranules with excellent photocatalytic activity. Applied Surface Science, 292, 520–530. DOI: 10.1016/j.apsusc.2013.12.004. http://dx.doi.org/10.1016/j.apsusc.2013.12.00410.1016/j.apsusc.2013.12.004Suche in Google Scholar

[46] Qamar, M., Gondal, M. A., & Yamani, Z. H. (2009). Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water. Catalysis Communications, 10, 1980–1984. DOI: 10.1016/j.catcom.2009.07.014. http://dx.doi.org/10.1016/j.catcom.2009.07.01410.1016/j.catcom.2009.07.014Suche in Google Scholar

[47] Rusdi, R., Rahman, A. A., Mohamed, N. S., Kamarudin, N., & Kamarulzaman, N. (2011). Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures Powder Technology, 210, 18–22. DOI: 10.1016/j.powtec.2011.02.005. http://dx.doi.org/10.1016/j.powtec.2011.02.00510.1016/j.powtec.2011.02.005Suche in Google Scholar

[48] Salavati-Niasari, M., Fereshteh, Z., & Davar, F. (2009). Synthesis of cobalt nanoparticles from [bis(2-hydroxyacetophenato) cobalt(II)] by thermal decomposition. Polyhedron, 28, 1065–1068. DOI: 10.1016/j.poly.2009.01.012. http://dx.doi.org/10.1016/j.poly.2009.01.01210.1016/j.poly.2009.01.012Suche in Google Scholar

[49] Shelke, P. N., Khollam, Y. B., Hawaldar, R. R., Gunjal, S. D., Udawant, R. R., Sarode, M. T., Takwale, M. G., & Mohite, K. C. (2013). Synthesis, characterization and optical properties of selective Co3O4 films 1-D interlinked nanowires prepared by spray pyrolysis technique. Fuel, 112, 542–549. DOI: 10.1016/j.fuel.2012.08.010. http://dx.doi.org/10.1016/j.fuel.2012.08.01010.1016/j.fuel.2012.08.010Suche in Google Scholar

[50] Sugimoto, T., & Matijević, E. (1979). Colloidal cobalt hydrous oxides. Preparation and properties of monodispersed Co3O4. Journal of Inorganic and Nuclear Chemistry, 41, 165–172. DOI: 10.1016/0022-1902(79)80506-0. http://dx.doi.org/10.1016/0022-1902(79)80506-010.1016/0022-1902(79)80506-0Suche in Google Scholar

[51] Tao, F., Gao, C., Wen, Z., Wang, Q., Li, J., & Xu, Z. (2009). Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance. Journal of Solid State Chemistry, 182, 1055–1060. DOI: 10.1016/j.jssc.2009.01.030. http://dx.doi.org/10.1016/j.jssc.2009.01.03010.1016/j.jssc.2009.01.030Suche in Google Scholar

[52] Thota, S., Kumar, A., & Kumar, J. (2009). Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derived oxalates. Materials Science and Engineering B, 164, 30–37. DOI: 10.1016/j.mseb.2009.06.002. http://dx.doi.org/10.1016/j.mseb.2009.06.00210.1016/j.mseb.2009.06.002Suche in Google Scholar

[53] Vijayakumar, S., Kiruthika Ponnalagi, A., Nagamuthu, S., & Muralidharan, G. (2013). Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochimica Acta, 106, 500–505. DOI: 10.1016/j.electacta.2013.05.121. http://dx.doi.org/10.1016/j.electacta.2013.05.12110.1016/j.electacta.2013.05.121Suche in Google Scholar

[54] Wang, G. S., Hsieh, S. T., & Hong, C. S. (2000). Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide. Water Research, 34, 3882–3887. DOI: 10.1016/s0043-1354(00)00120-2. http://dx.doi.org/10.1016/S0043-1354(00)00120-210.1016/S0043-1354(00)00120-2Suche in Google Scholar

[55] Wang, C., Liu, S., Liu, L., & Bai, X. (2006). Synthesis of cobalt-aluminate spinels via glycine chelated precursors. Materials Chemistry and Physics, 96, 361–370. DOI: 10.1016/j.matchemphys.2005.07.066. http://dx.doi.org/10.1016/j.matchemphys.2005.07.06610.1016/j.matchemphys.2005.07.066Suche in Google Scholar

[56] Wang, Y. Z., Zhao, Y. X., Gao, C. G., & Liu, D. S. (2007). Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation. Catalysis Letters, 116, 136–142. DOI: 10.1007/s10562-007-9099-4. http://dx.doi.org/10.1007/s10562-007-9099-410.1007/s10562-007-9099-4Suche in Google Scholar

[57] Warang, T., Patel, N., Santini, A., Bazzanella, N., Kale, A., & Miotello, A. (2012). Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Applied Catalysis A: General, 423–424, 21–27. DOI: 10.1016/j.apcata.2012.02.037. http://dx.doi.org/10.1016/j.apcata.2012.02.03710.1016/j.apcata.2012.02.037Suche in Google Scholar

[58] Warang, T., Patel, N., Fernandes, R., Bazzanella, N., & Miotello, A. (2013). Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye. Applied Catalysis B: Environmental, 132–133, 204–211. DOI: 10.1016/j.apcatb.2012.11.040. http://dx.doi.org/10.1016/j.apcatb.2012.11.04010.1016/j.apcatb.2012.11.040Suche in Google Scholar

[59] Wu, R. J., Wu, J. G., Yu, M. R., Tsai, T. K., & Yeh, C. T. (2008). Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature. Sensors and Actuators B, 131, 306–312. DOI: 10.1016/j.snb.2007.11.033. http://dx.doi.org/10.1016/j.snb.2007.11.03310.1016/j.snb.2007.11.033Suche in Google Scholar

[60] Xiao, Q., Zhang, J., Xiao, C., & Tan, X. (2008). Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catalysis Communications, 9, 1247–1253. DOI: 10.1016/j.catcom.2007.11.011. http://dx.doi.org/10.1016/j.catcom.2007.11.01110.1016/j.catcom.2007.11.011Suche in Google Scholar

[61] Yogamalar, R., Venkateswaran, P. S., Benzigar, M. R., Ariga, K., Vinu, A., & Bose, A. C. (2012). Dopant induced bandgap narrowing in Y-doped zinc oxide nanostructures. Journal of Nanoscience and Nanotechnology, 12, 75–83. DOI: 10.1166/jnn.2012.5760. http://dx.doi.org/10.1166/jnn.2012.576010.1166/jnn.2012.5760Suche in Google Scholar PubMed

[62] Zhang, D., Yang, D., Zhang, H., Lu, C., & Qi, L. (2006). Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by Sephadex G-100. Chemistry of Materials, 18, 3477–3485. DOI: 10.1021/cm060503p. http://dx.doi.org/10.1021/cm060503p10.1021/cm060503pSuche in Google Scholar

[63] Zhang, Y., Chen, Y., Wang, T., Zhou, J., & Zhao, Y. (2008). Synthesis and magnetic properties of nanoporous Co3O4 nanoflowers. Microporous and Mesoporous Materials, 114, 257–261. DOI: 10.1016/j.micromeso.2008.01.011. http://dx.doi.org/10.1016/j.micromeso.2008.01.01110.1016/j.micromeso.2008.01.011Suche in Google Scholar

[64] Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., & Stucky, G. D. (1998). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120, 6024–6036. DOI: 10.1021/ja974025i. http://dx.doi.org/10.1021/ja974025i10.1021/ja974025iSuche in Google Scholar

[65] Zhao, W., Liu, Y., Li, H., & Zhang, X. (2008). Preparation and characterization of hollow Co3O4 spheres. Materials Letters, 62, 772–774. DOI: 10.1016/j.matlet.2007.06.057. http://dx.doi.org/10.1016/j.matlet.2007.06.05710.1016/j.matlet.2007.06.057Suche in Google Scholar

[66] Zhao, X., Pang, Z., Wu, M., Liu, X., Zhang, H., Ma, Y., Sun, Z., Zhang, L., & Chen, X. (2013). Magnetic field-assisted synthesis of wire-like Co3O4 nanostructures: Electrochemical and photocatalytic studies. Materials Research Bulletin, 48, 92–95. DOI: 10.1016/j.materresbull.2012.10.001. http://dx.doi.org/10.1016/j.materresbull.2012.10.00110.1016/j.materresbull.2012.10.001Suche in Google Scholar

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0561-7/html?lang=de
Button zum nach oben scrollen