Abstract
A method for extracting coenzyme Q10 (CoQ10) from Artemia was developed. 1 g of fresh Artemia was incubated with 75 % acetic acid at (30 ± 2)°C for 24 h, followed by three consecutive extractions with a mixture of 5 mL of hexane and 5 mL of ethanol, then analysis by a validated high-performance liquid chromatography with a diode-array detector. The calibration curve for CoQ10 was linear in a range of 1–50 μg mL−1. The limits of detection and quantification were 0.3 μg mL−1 and 1.1 μg mL−1, respectively. Mean recoveries were 94–100 % with a high precision of below 10 %. The method developed was found to be simple, efficient and the time required for releasing CoQ10 from Artemia was short. The method provides not only low energy consumption but is also practical for industrial applications.
[1] Anand, T., Nopadol, P., Tanan, S., & Thongchai, P. (1993). A culture and the use of Artemia (pp. 1–13). Bangkok, Thailand: Agricultural Co-Operative Federation of Thailand. Suche in Google Scholar
[2] AOAC (2013). Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. Retrieved February 28, 2013 from http://www.aoac.org/OfficialMethods/slv_guidelines.pdf Suche in Google Scholar
[3] Bhagavan, H. N., & Chopra, R. K. (2005). Potential role of ubiquinone (coenzyme Q10) in pediatric cardiomyopathy. Clinical Nutrition, 24, 331–338. DOI: 10.1016/j.clnu.2004.12.005. http://dx.doi.org/10.1016/j.clnu.2004.12.00510.1016/j.clnu.2004.12.005Suche in Google Scholar
[4] Cao, X. L., Xu, Y. T., Zhang, G. M., Xie, S. M., Dong, Y. M., & Ito, Y. (2006). Purification of coenzyme Q10 from fermentation extract: High-speed counter-current chromatography versus silica gel column chromatography. Journal of Chromatography A, 1127, 92–96. DOI: 10.1016/j.chroma.2006.05.083. http://dx.doi.org/10.1016/j.chroma.2006.05.08310.1016/j.chroma.2006.05.083Suche in Google Scholar
[5] Ha, S. J., Kim, S. Y., Seo, J. H., Oh, D. K., & Lee, J. K. (2007). Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Applied Microbiology and Biotechnology, 74, 974–980. DOI: 10.1007/s00253-006-0744-4. http://dx.doi.org/10.1007/s00253-006-0744-410.1007/s00253-006-0744-4Suche in Google Scholar
[6] Han, N. M., May, C. Y., Ngan, M. A., Hock, C. C., & Hashim, M. A. (2006). Separation of coenzyme Q10 in palm oil by supercritical fluid chromatography. American Journal of Applied Sciences, 3, 1929–1932. DOI: 10.3844/ajassp.2006.1929.1932. http://dx.doi.org/10.3844/ajassp.2006.1929.193210.3844/ajassp.2006.1929.1932Suche in Google Scholar
[7] Hidaka, T., Fujii, K., Funahashi, I., Fukutomi, N., & Hosoe, K. (2008). Safety assessment of coenzyme Q10 (CoQ10). Biofactors, 32, 199–208. http://dx.doi.org/10.1002/biof.552032012410.1002/biof.5520320124Suche in Google Scholar
[8] Ikeda, M., & Kagei, K. (1979). Ubiquinone content of eight plant species in cell culture. Phytochemistry, 18, 1577–1578. DOI:10.1016/s0031-9422(00)98506-6. http://dx.doi.org/10.1016/S0031-9422(00)98506-610.1016/S0031-9422(00)98506-6Suche in Google Scholar
[9] Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzębska, J. (2006). HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42, 232–236. DOI: 10.1016/j.jpba.2006.03.037. http://dx.doi.org/10.1016/j.jpba.2006.03.03710.1016/j.jpba.2006.03.037Suche in Google Scholar PubMed
[10] Kumar, A., Kaur, H., Devi, P., & Mohan, V. (2009). Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacology & Therapeutics, 124, 259–268. DOI: 10.1016/j.pharmthera.2009.07.003. http://dx.doi.org/10.1016/j.pharmthera.2009.07.00310.1016/j.pharmthera.2009.07.003Suche in Google Scholar PubMed
[11] Léger, P., Bengtson, D. A., Sorgeloos, P., Simpson, K. L., & Beck, A. D. (1987). The nutritional value of Artemia: A review. In P. Sorgeloos, D. A. Bengtson, W. Decleir, & E. Jaspers (Eds.), Ecology, culturing, use in aquaculture (Vol. 3, pp. 357–372). Wetteren, Belgium: Universa Press. Suche in Google Scholar
[12] Mattila, P., Lehtonen, M., & Kumpulainen, J. (2000). Comparison of in-line connected diode array and electrochemical detectors in the high-performance liquid chromatographic analysis of coenzymes Q9 and Q10 in food materials. Journal of Agricultural and Food Chemistry, 48, 1229–1233. DOI: 10.1021/jf990581f. http://dx.doi.org/10.1021/jf990581f10.1021/jf990581fSuche in Google Scholar PubMed
[13] Miller, J. M. (2005). Chromatography concepts and contrasts (2nd ed.). Hoboken, NJ, USA: Wiley. Suche in Google Scholar
[14] Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Essex, England, UK: Pearson Education Limited. Suche in Google Scholar
[15] Ni, H., Chen, Q. H., He, G. Q., Wu, G. B., & Yang, Y. F. (2008). Optimization of acidic extraction of astaxanthin from Phaffia rhodozyma. Journal of Zhejiang University SCIENCE B, 9, 51–59. DOI: 10.1631/jzus.b061261. http://dx.doi.org/10.1631/jzus.B06126110.1631/jzus.B061261Suche in Google Scholar PubMed PubMed Central
[16] Ondarroa, M., Sharma, S. K., & Quinn, P. J. (1986). Solvation properties of ubiquinone-10 in solvents of different polarity. Bioscience Reports, 6, 783–796. DOI: 10.1007/bf01117101. http://dx.doi.org/10.1007/BF0111710110.1007/BF01117101Suche in Google Scholar
[17] Persoone, G., & Wells, P. G. (1987). Artemia in aquatic toxicology: A review. In P. Sorgeloos, D. A. Bengtson, W. Decleir, & E. Jaspers (Eds.), Morphology, genetics, strain characterization, toxicology (Vol. 1, pp. 259–275). Wetteren, Belgium: Universa Press. Suche in Google Scholar
[18] Purchas, R. W., Rutherfurd, S. M., Pearce, P. D., Vather, R., & Wilkinson, B. H. P. (2004). Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10 and creatine. Meat Science, 66, 629–637. DOI: 10.1016/s0309-1740(03)00181-5. http://dx.doi.org/10.1016/S0309-1740(03)00181-510.1016/S0309-1740(03)00181-5Suche in Google Scholar
[19] Pyo, Y. H., & Oh, H. J. (2011). Ubiquinone contents in Korean fermented foods and average daily intakes. Journal of Food Composition Analysis, 24, 1123–1129. DOI: 10.1016/j.jfca.2011.03.018. http://dx.doi.org/10.1016/j.jfca.2011.03.01810.1016/j.jfca.2011.03.018Suche in Google Scholar
[20] Raekasin, N., Rujiralai, T., Cheewasedtham, W., & Cheewasedtham, C. (2013). Effect of acid-heat treatment on coenzyme Q10 extraction efficiency from Artemia. In Proceedings of the Pure and Applied Chemistry International Conference 2013 (PACCON 2013), January 23–25, 2013 (pp. 28–31). Faculty of Science, Burapha University and The Chemical Society of Thailand. Suche in Google Scholar
[21] Rao, G. H., Shen, G. L., & Xu, G. (2011). Ultrasonic assisted extraction of coenzyme Q10 from litchi (Litchi chinensis Sonn.) pericarp using response surface methodology. Journal of Food Process Engineering, 34, 671–681. DOI: 10.1111/j.1745-4530.2009.00420.x. http://dx.doi.org/10.1111/j.1745-4530.2009.00420.x10.1111/j.1745-4530.2009.00420.xSuche in Google Scholar
[22] Rodríguez-Acuña, R., Brenne, E., & Lacoste F. (2008). Determination of coenzyme Q10 and Q9 in vegetable oils. Journal of Agricultural and Food Chemistry, 56, 6241–6245. DOI: 10.1021/jf800103e. http://dx.doi.org/10.1021/jf800103e10.1021/jf800103eSuche in Google Scholar PubMed
[23] Shults, C. W. (2005). Therapeutic role of coenzyme Q10 in Parkinson’s disease. Pharmacology & Therapeutics, 107, 120–130. DOI: 10.1016/j.pharmthera.2005.02.002. http://dx.doi.org/10.1016/j.pharmthera.2005.02.00210.1016/j.pharmthera.2005.02.002Suche in Google Scholar PubMed
[24] Souchet, N., & Laplante, S. (2007). Seasonal variation of coenzyme Q10 content in pelagic fish tissues from Eastern Quebec. Journal of Food Composition Analysis, 20, 403–410. DOI: 10.1016/j.jfca.2006.09.004. http://dx.doi.org/10.1016/j.jfca.2006.09.00410.1016/j.jfca.2006.09.004Suche in Google Scholar
[25] Tian, Y. T., Yue, T. L., Pei, J. J., Yuan, Y. H., Li, J. H., & Lo, Y. M. (2010a). Effects of cell lysis treatments on the yield of coenzyme Q10 following Agrobacterium tumefaciens fermentation. Food Science and Technology International, 16, 195–203. DOI: 10.1177/1082013210366788. http://dx.doi.org/10.1177/108201321036678810.1177/1082013210366788Suche in Google Scholar PubMed
[26] Tian, Y. T., Yue, T. L., Yuan, Y. H., Soma, P. K., & Lo, Y. M. (2010b). Improvement of cultivation medium for enhanced production of coenzyme Q10 by photosynthetic Rhodospirillum rubrum. Biochemical Engineering Journal, 51, 160–166. DOI: 10.1016/j.bej.2010.06.011. http://dx.doi.org/10.1016/j.bej.2010.06.01110.1016/j.bej.2010.06.011Suche in Google Scholar
[27] Warner, A. H. (1964). Isolation, purification and some properties of P1,P4-diguanosine 5′-tetraphosphate asymmetricalpyrophosphohydrolase from brine shrimp eggs. Ph.D. thesis. Carbondale, IL, USA: Southern Illinois University. Suche in Google Scholar
[28] Xue, X. F., Zhao, J., Chen, L. Z., Zhou, J. H., Yue, B., Li, Y., Wu, L. M., & Liu, F. M. (2012). Analysis of coenzyme Q10 in bee pollen using online cleanup of accelerated solvent extraction and high performance liquid chromatography. Food Chemistry, 133, 573–578. DOI: 10.1016/j.foodchem.2011.12.085. http://dx.doi.org/10.1016/j.foodchem.2011.12.08510.1016/j.foodchem.2011.12.085Suche in Google Scholar PubMed
[29] Zhong, W. H., Fang, J. J., Liu H. G., & Wang, X. (2009). Enhanced production of CoQ10 by newly isolated Sphingomonas sp. ZUTEO3 with a coupled fermentation-extraction process. Journal of Industrial Microbiology & Biotechnology, 36, 687–693. DOI: 10.1007/s10295-009-0538-7. http://dx.doi.org/10.1007/s10295-009-0538-710.1007/s10295-009-0538-7Suche in Google Scholar PubMed
[30] Zu, Y. G., Zhao, C. J., Li, C. Y., & Zhang, L. (2006). A rapid and sensitive LC-MS/MS method for determination of coenzyme Q10 in tobacco (Nicotiana tabacum L.) leaves. Journal of Separation Science, 29, 1607–1612. DOI: 10.1002/jssc.200600047. http://dx.doi.org/10.1002/jssc.20060004710.1002/jssc.200600047Suche in Google Scholar PubMed
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes
Artikel in diesem Heft
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes