Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
Abstract
Effects of the anion type on the structure, thermal stability, and catalytic performance of La-doped Cu-Mn catalysts prepared by co-precipitation were characterized by X-ray diffraction, Brunauer-Emmett-Teller, temperature-programmed reduction, temperature-programmed reduction of oxidized surfaces, and temperature-programmed desorption. The Cu-Mn catalyst was tested for the water-gas shift (WGS) reaction. The main crystalline phase of samples prepared with sulfate, acetate, chloride, and nitrate as the starting materials was a Cu1.5Mn1.5O4 spinel structure, following the WGS reaction, the main crystalline phases were transformed into Cu and MnO. The sample prepared with acetate as the starting material showed the most obvious MnCO3 characteristic diffraction peaks, with better synergistic effects of Cu and MnO, increased adsorption of CO2 and improved dispersion of Cu on the catalyst surface; also, the best thermal stability and the highest low temperature catalytic activity were observed. The sample prepared with nitrate as the starting material maintained high thermal stability and catalytic performance in the range of 400°C to 450°C, but CO conversion decreased below 350°C. Catalytic performance of the sample prepared with sulfate and chloride as the starting materials was poor, ranging from 200°C to 450°C.
[1] Chen, J. X., Wang, R. J., Li, Y. M.,& Zhang, J. Y. (2001). Influences of different nickel precursors on the performance of Ni/γ-Al2O3 catalysts for CH4-CO2 reforming. Journal of Fuel Chemistry and Technology, 29, 494–498. Suche in Google Scholar
[2] Cui, M. S., Yang, D., He, Z. S., Song, Y. J., Huang, X. W.,& Chen, Z. (2004). Effect of CuO/CeO2 catalyst on methane combustion. Journal of the Chinese Rare Earth Society, 22, 605–608. DOI: 10.3321/j.issn:1000-4343.2004.05.004. Suche in Google Scholar
[3] Du, X. R., Yuan, Z. S., Cao, L., Zhang, C. X.,& Wang, S. D. (2008). Water gas shift reaction over Cu-Mn mixed oxides catalysts: Effects of the third metal. Fuel Processing Technology, 89, 131–138. DOI: 10.1016/j.fuproc.2007.07.002. http://dx.doi.org/10.1016/j.fuproc.2007.07.00210.1016/j.fuproc.2007.07.002Suche in Google Scholar
[4] Fu, Q., Saltsburg, H.,& Flytzani-Stephanopoulos, M. (2003). Active non-metallic Au and Pt species on ceria-based watergas shift catalysts. Science, 301, 935–938. DOI: 10.1126/science.1085721. http://dx.doi.org/10.1126/science.108572110.1126/science.1085721Suche in Google Scholar
[5] Ghenciu, A. F. (2002). Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Current Opinion in Solid State & Materials Science, 6, 389–399. DOI: 10.1016/s1359-0286(02)00108-0. http://dx.doi.org/10.1016/S1359-0286(02)00108-010.1016/S1359-0286(02)00108-0Suche in Google Scholar
[6] He, R. X., Liu, Q. S., Zhi, K. D.,& Cui, X. L. (2008). Effect of adding rate of precipitator on the texture and activity of the copper-manganese mixed oxide catalyst for water gas shift reaction. Journal of Fuel Chemistry and Technology, 36, 767–771. DOI: 10.3969/j.issn.0253-2409.2008.06.022. Suche in Google Scholar
[7] He, R. X., Zhi, K. D., Liu, Q. S., Wu, F., Zhou, C. L.,& Zhang, P. B. (2012a). Copper-manganese catalysts prepared by precursor method for water-gas shift reaction. Journal of Molecular Catalysis (China), 6, 522–528. Suche in Google Scholar
[8] He, R. X., Liu, Q. S., Wu, F., Zhou, C. L., Zhi, K. D.,& Yao, H. B. (2012b). Effects of La-doping on the structure and performance of copper-manganese oxides for the water-gas shift reaction. Advanced Materials Research, 512–515, 2131–2134. DOI: 10.4028/www.scientific.net/AMR.512-515.2131. http://dx.doi.org/10.4028/www.scientific.net/AMR.512-515.213110.4028/www.scientific.net/AMR.512-515.2131Suche in Google Scholar
[9] Hua, J. M., Zheng, Q., Ling. X. Y.,& Wei, K. M. (2003). Influence of Au loading on the structure and catalytic performance of Au/α-Fe2O3 catalysts for low-temperature water-gas shift reaction. Journal of Fuel Chemistry and Technology, 31, 558–563. DOI: 10.3969/j.issn.0253-2409.2003.06.009. Suche in Google Scholar
[10] Hua, J. M., Wei, K. M., Zheng, Q.,& Lin, X. Y. (2004). Influence of calcination temperature on the structure and catalytic performance of Au/iron oxide catalysts for water-gas shift reaction. Applied Catalysis A: General, 259, 121–130. DOI: 10.1016/j.apcata.2003.09.028. http://dx.doi.org/10.1016/j.apcata.2003.09.02810.1016/j.apcata.2003.09.028Suche in Google Scholar
[11] Hutchings, G. J., Mirzaei, A. A., Joyner, R. W., Siddiqui, M. R. H.,& Taylor, H. S. (1998). Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General, 166, 143–152. DOI: 10.1016/s0926-860x(97)00248-2. http://dx.doi.org/10.1016/S0926-860X(97)00248-210.1016/S0926-860X(97)00248-2Suche in Google Scholar
[12] Jiang, H. Q., He, R. X., Wu, F., Zhi, K. D., Zhou, C. L., Zhang, W. H.,& Liu, Q. S. (2013). The effect of anions on structure and catalytic properties of the Fe-based high temperature shift catalyst. Journal of Inner Mongolia University of Technology, 32, 189–193. Suche in Google Scholar
[13] Kim, C. H.,& Thompson, L. T. (2006). On the importance of nanocrystalline gold for Au/CeO2 water-gas shift catalysts. Journal of Catalysis, 244, 248–250. DOI: 10.1016/j.jcat.2006.08.018. http://dx.doi.org/10.1016/j.jcat.2006.08.01810.1016/j.jcat.2006.08.018Suche in Google Scholar
[14] Kniep, B. L., Ressler, T., Rabis, A., Girgsdies, F., Baenitz, M., Steglich, F.,& Schlögl R. (2004). Rational design of nanostructured copper-zinc oxide catalysts for the steam reforming of methanol. Angewandte Chemie International Edition, 43, 112–115. DOI: 10.1002/anie.200352148. http://dx.doi.org/10.1002/anie.20035214810.1002/anie.200352148Suche in Google Scholar
[15] Kniep, B. L., Girgsdies, F.,& Ressler, T. (2005). Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming. Journal of Catalysis, 236, 34–44. DOI: 10.1016/j.jcat.2005.09.001. http://dx.doi.org/10.1016/j.jcat.2005.09.00110.1016/j.jcat.2005.09.001Suche in Google Scholar
[16] Koryabkina, N. A., Phatak, A. A, Ruettinger, W. F., Farrauto, R. J.,& Ribeiro, F. H. (2003). Determination of kinetic parameters for the water-gas shift reaction on copper catalysts under realistic conditions for fuel cell applications. Journal of Catalysis, 217, 233–239. DOI: 10.1016/s0021-9517(03)00050-2. 10.1016/S0021-9517(03)00050-2Suche in Google Scholar
[17] Kusama, H., Bando, K. K., Okabe, K.,& Arakawa, H. (2001). CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors. Applied Catalysis A: General, 205, 285–294. DOI: 10.1016/s0926-860x(00)00576-7. http://dx.doi.org/10.1016/S0926-860X(00)00576-710.1016/S0926-860X(00)00576-7Suche in Google Scholar
[18] Li, E. L., Gao, J. G., Cui, H. N.,& Qin, X. W. (2009). Risk analysis of China’s lignite upgrading project. Coal Economic Research, 12, 25–56. Suche in Google Scholar
[19] Liu, Q. S., Zhang, Q. C., Ma, W. P., He, R. X., Kou, L. J.,& Mou, Z. J. (2005a). Progress in water-gasshift catalysts. Progress in Chemistry, 17, 389–398. DOI: 10.3321/j.issn:1005-281x.2005.03.003. Suche in Google Scholar
[20] Liu, Q. S., He, R.X., Cui, X. L., Zhi, K. D., & Ma, W. P. (2005b). A thermostable Cu-Mn based catalyst for high temperature water-gas-shift reaction. In Proceedings of the 230th ACS National Meeting, August 28–September 1, 2005. Washington, DC, USA: ACS. Suche in Google Scholar
[21] Liu, Q., Wang, L. C., Chen, M., Liu, Y. M., Cao, Y., He, H. Y.,& Fan, K. N. (2008). Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming. Catalysis Letters, 121, 144–150. DOI: 10.1007/s10562-007-9311-6. http://dx.doi.org/10.1007/s10562-007-9311-610.1007/s10562-007-9311-6Suche in Google Scholar
[22] Schur, M., Bems, B., Dassenoy, A., Kassatkine, I., Urban, J., Wilmes, H., Hinrichsen, O., Muhler, M.,& Schlögl, R. (2003). Continuous coprecipitation of catalysts in a micromixer: Nanostructured Cu/ZnO composite for the synthesis of methanol. Angewandte Chemie International Edition, 42, 3815–3817. DOI: 10.1002/anie.200250709. http://dx.doi.org/10.1002/anie.20025070910.1002/anie.200250709Suche in Google Scholar
[23] Swartz, S. L., Seabaugh, M. M., Holt, C. T.,& Dawson, W. J. (2001). Fuel processing catalysts based on nanoscale ceria. Fuel Cells Bulletin, 4(30), 7–10. DOI: 10.1016/s1464-2859(01)80039-0. http://dx.doi.org/10.1016/S1464-2859(01)80039-010.1016/S1464-2859(01)80039-0Suche in Google Scholar
[24] Tabakova, T., Boccuzzi, F., Manzoli, M.,& Andreeva, D. (2003). FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst. Applied Catalysis A: General, 252, 385–397. DOI: 10.1016/s0926-860x(03)00493-9. http://dx.doi.org/10.1016/S0926-860X(03)00493-910.1016/S0926-860X(03)00493-9Suche in Google Scholar
[25] Tabakova, T., Boccuzzi, F., Manzoli, M., Sobczak, J. W., Idakiev, V.,& Andreeva, D. (2004). Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts. Applied Catalysis B: Environmental, 49, 73–81. DOI: 10.1016/j.apcatb.2003.11.014. http://dx.doi.org/10.1016/j.apcatb.2003.11.01410.1016/j.apcatb.2003.11.014Suche in Google Scholar
[26] Tabakova, T., Idakiev, V., Avgouropoulos, G., Papavasiliou, J., Manzoli, M., Boccuzzi, F.,& Ioannides, T. (2013). Highly active copper catalyst for low-temperature watergas shift reaction prepared via a Cu-Mn spinel oxide precursor. Applied Catalysis A: General, 451, 184–191. DOI: 10.1016/j.apcata.2012.11.025. http://dx.doi.org/10.1016/j.apcata.2012.11.02510.1016/j.apcata.2012.11.025Suche in Google Scholar
[27] Tanaka, Y., Takeguchi, T., Kikuchi, R.,& Eguchi, K. (2005). Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Applied Catalysis A: General, 279, 59–66. DOI: 10.1016/j.apcata.2004.10.013. http://dx.doi.org/10.1016/j.apcata.2004.10.01310.1016/j.apcata.2004.10.013Suche in Google Scholar
[28] Trimm, D. L.,& Önsan, Z. I. (2001). Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catalysis Reviews: Science and Engineering, 43, 31–84. DOI: 10.1081/cr-100104386. http://dx.doi.org/10.1081/CR-10010438610.1081/CR-100104386Suche in Google Scholar
[29] Wu, F. (2012). Studies on synthesis, characteristics and intrinsic kinetics of the La-doped copper-manganese catalysts for coal-derived shift reaction. Master Dissertation, Inner Mongolia University of Technology, Huhehaote, China. Suche in Google Scholar
[30] Yahiro, H., Nakaya, K., Yamamoto, T., Saiki, K.,& Yamaura, H. (2006). Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gasshift reaction. Catalysis Communications, 7, 228–231. DOI: 10.1016/j.catcom.2005.11.004. http://dx.doi.org/10.1016/j.catcom.2005.11.00410.1016/j.catcom.2005.11.004Suche in Google Scholar
[31] Yang, L. (2011). Synthesis, characteristics and catalysis performance of copper-manganese catalyst for coal-derived widerange temperature shift reaction. Master Dissertation, Inner Mongolia University of Technology, Huhehaote, China. Suche in Google Scholar
[32] Yeragi, D. C., Pradhan, N. C.,& Dalai, A. K. (2006). Lowtemperature water-gas shift reaction over Mn-promoted Cu/Al2O3 catalysts. Catalysis Letters, 112, 139–148. DOI: 10.1007/s10562-006-0193-9. http://dx.doi.org/10.1007/s10562-006-0193-910.1007/s10562-006-0193-9Suche in Google Scholar
[33] Zhang, Y. J., Hu, Q. X., Hu, B., Fang, Z. Y., Qian, Y. T.,& Zhang, Z. D. (2006). Preparation, characterization and application of a new kind of mesoporous composite. Materials Chemistry and Physics, 96, 16–21. DOI: 10.1016/j.matchemphys.2005.06.028. http://dx.doi.org/10.1016/j.matchemphys.2005.06.02810.1016/j.matchemphys.2005.06.028Suche in Google Scholar
[34] Zhang, Z. C., Zhang, Q. X., Yin, Y. Q., Wu, F., Yu, X. F., Xu, Y. Z.,& Li, B. (2008). Reducing and catalytic behaviors of copper and manganese oxides water gas shift catalyst. Industrial Catalysis, 16(7), 30–35. Suche in Google Scholar
[35] Zhi, G. J., Wang, Y. Y., Jin, G. Q.,& Guo, X. Y. (2012). Effect of nickel precursors on catalytic performance of Ni/SiC catalysts for CO2 methanation. Natural Gas Chemical Industry, 2012(5), 10–14. Suche in Google Scholar
[36] Zhi, K. D. (2010). Analysis, optimization of the reaction precipitation process and controlled synthesis of copper-based mixed oxides catalyst for water-gas shift reaction. Ph.D. thesis, Inner Mongolia University of Technology, Huhehaote, China. Suche in Google Scholar
[37] Zhi, K. D., Liu, Q. S., Zhang, Y. G., He, S.,& He, R. X. (2010). Effect of precipitator on the texture and activity of coppermanganese mixed oxide catalysts for the water gas shift reaction. Journal of Fuel Chemistry and Technology, 38, 445–451. DOI: 10.1016/s1872-5813(10)60038-2. http://dx.doi.org/10.1016/S1872-5813(10)60038-210.1016/S1872-5813(10)60038-2Suche in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes
Artikel in diesem Heft
- Recent advances in application of liquid-based micro-extraction: A review
- Determination of nitrites and nitrates in drinking water using capillary electrophoresis
- Comparison of digestion methods for determination of total phosphorus in river sediments
- Interdisciplinary study on pottery experimentally impregnated with wine
- Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
- Development of an effective extraction process for coenzyme Q10 from Artemia
- Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
- Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
- Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
- Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
- Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
- Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
- Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
- Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
- Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
- Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
- Properties of singlet- and triplet-excited states of hemicyanine dyes