Home Degradation of polylactide using basic ionic liquid imidazolium acetates
Article
Licensed
Unlicensed Requires Authentication

Degradation of polylactide using basic ionic liquid imidazolium acetates

  • Xiao-Yang Li EMAIL logo , Qian Zhou , Ke-Ke Yang and Yu-Zhong Wang
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

Imidazolium acetate ionic liquids show high efficiency in the degradation of polylactides (PLA): degradation degree of PLA can reach almost 100 % in imidazolium acetate ionic liquids at 170°C and 1 h under atmospheric pressure, while the degradation degree of PLA remains close to 0 % using neutral 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and acidic ionic liquids at the same reaction conditions. With the increase of both the amount of acetate ionic liquid and the reaction temperature, the degradation degree of PLA increases. The structure of ionic liquids affects the degradation behavior of PLA: for cations, the proton from the C-2 position on the imidazolium ring is involved in the degradation of PLA; the degradation of PLA increases with the increase of the alkyl side-chain length of imidazolium cations; for anions, moderate basicity of the acetate ion contributes to the high activity of the imidazolium acetate ionic liquids in the degradation of PLA.

[1] de Jong, S. J., Arias, E. R., Rijkers, D. T. S., van Nostrum, C. F., Kettenes-van den Bosch, J. J., & Hennink, W. E. (2001). New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer, 42, 2795–2802. DOI: 10.1016/s0032-3861(00)00646-7. http://dx.doi.org/10.1016/S0032-3861(00)00646-710.1016/S0032-3861(00)00646-7Search in Google Scholar

[2] He, X. L., Zhou, Q., Li, X. Y., Yang, P., van Kasteren, J. M. N., & Wang, Y. Z. (2012). Dechlorination of poly(vinyl chloride) by 1-butyl-3-methylimidazoliumhydroxide. Polymer Degradation and Stability, 97, 145–148. DOI: 10.1016/j.polymdegradstab.2011.11.005. http://dx.doi.org/10.1016/j.polymdegradstab.2011.11.00510.1016/j.polymdegradstab.2011.11.005Search in Google Scholar

[3] Höglund, A., Odelius, K., & Albertsson, A. C. (2013). Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (L-lactide). ACS Applied Materials & Interfaces, 4, 2788–2793. DOI: 10.1021/am300438k. http://dx.doi.org/10.1021/am300438k10.1021/am300438kSearch in Google Scholar PubMed PubMed Central

[4] Hollóczki, O., Gerhard, D., Massone, K., Szarvas, L., Németh, B., Veszprémi, T., & Nyulászi, L. (2010). Carbenes in ionic liquids. New Journal of Chemistry, 34, 3004–3009. DOI: 10.1039/c0nj00380h. http://dx.doi.org/10.1039/c0nj00380h10.1039/c0nj00380hSearch in Google Scholar

[5] Huddleston, J. G., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/a803999b. http://dx.doi.org/10.1039/a803999b10.1039/A803999BSearch in Google Scholar

[6] Kamimura, A., & Yamamoto, S. (2007). An efficient method to depolymerize polyamide plastics: A new use of ionic liquids. Organic Letters, 9, 2533–2535. DOI: 10.1021/ol070886c. http://dx.doi.org/10.1021/ol070886c10.1021/ol070886cSearch in Google Scholar PubMed

[7] Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101, 8493–8501. DOI: 10.1016/j.biortech.2010.05.092. http://dx.doi.org/10.1016/j.biortech.2010.05.09210.1016/j.biortech.2010.05.092Search in Google Scholar PubMed

[8] Park, K. I., & Xanthos, M. (2009). A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polymer Degradation and Stability, 94, 834–844. DOI: 10.1016/j.polymdegradstab.2009.01.030. http://dx.doi.org/10.1016/j.polymdegradstab.2009.01.03010.1016/j.polymdegradstab.2009.01.030Search in Google Scholar

[9] Rodríguez, H., Gurau, G., Holbrey, J. D., & Rogers, R. D. (2011). Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chemical Communications, 47, 3222–3224. DOI: 10.1039/c0cc05223j. http://dx.doi.org/10.1039/c0cc05223j10.1039/c0cc05223jSearch in Google Scholar PubMed

[10] Rydz, J., Adamus, G., Wolna-Stypka, K., Marcinkowski, A., Misiurska-Marczak, M., & Kowalczuk, M. M. (2013). Degradation of polylactide in paraffin and selected protic media. Polymer Degradation and Stability, 98, 316–324. DOI: 10.1016/j.polymdegradstab.2012.09.010. http://dx.doi.org/10.1016/j.polymdegradstab.2012.09.01010.1016/j.polymdegradstab.2012.09.010Search in Google Scholar

[11] Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19, 634–643. DOI: 10.1016/j.tifs.2008.07.003. http://dx.doi.org/10.1016/j.tifs.2008.07.00310.1016/j.tifs.2008.07.003Search in Google Scholar

[12] Wang, H., Liu, Y. Q., Li, Z. X., Zhang, X. P., Zhang, S. J., & Zhang, Y. Q. (2009). Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. European Polymer Journal, 45, 1535–1544. DOI: 10.1016/j.eurpolymj.2009.01.025. http://dx.doi.org/10.1016/j.eurpolymj.2009.01.02510.1016/j.eurpolymj.2009.01.025Search in Google Scholar

[13] Xu, L., Crawford, K., & Gorman, C. B. (2011). Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules, 44, 4777–4782. DOI: 10.1021/ma2000948. http://dx.doi.org/10.1021/ma200094810.1021/ma2000948Search in Google Scholar

[14] Zhao, T., Zhou, Q., He, X. L., Wei, S. D., Wang, L., van Kasteren, J. M. N., & Wang, Y. Z. (2010). A highly efficient approach for dehydrochlorinating polyvinyl chloride: catalysis by 1-butyl-3-methylimidazolium chloride. Green Chemistry, 12, 1062–1065. DOI: 10.1039/b927106f. http://dx.doi.org/10.1039/b927106f10.1039/b927106fSearch in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0560-8/pdf
Scroll to top button