Startseite Interdisciplinary study on pottery experimentally impregnated with wine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interdisciplinary study on pottery experimentally impregnated with wine

  • Eugenia Teodor EMAIL logo , Georgiana Badea , Andreia Alecu , Larisa Calu und Gabriel Radu
Veröffentlicht/Copyright: 15. April 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Experimentally developed ceramic pots, with two different sizes of grain, were half-filled with wine and subjected to thermal alteration at constant elevated temperature ((60 ± 2)°C) in darkness for 12 weeks. This work sought to characterise the samples thereby obtained from chemical and mineralogical perspectives using scanning electron microscopy and an energy-dispersive X-ray microanalysis system (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and capillary electrophoresis (CE) with UV detection as an alternative to chromatographic methods, due to its good resolution, automation, simplicity, high speed, low consumption of chemicals and short time required for sample preparation. The capillary electrophoresis method was used for the detection of five wine biomarkers: succinic acid, malic acid, tartaric acid, citric acid and lactic acid. In general, it was noted that the fine-grained ceramic assortment retained the organic material better than the coarser-grained ceramics. An interesting observation derived from this study was that not only could tartaric acid be considered as a biomarker for wine residues in archaeological pottery, but malic acid could also act similarly for white wine and lactic acid for red wine.

[1] Barnard, H., Ambrose, S. H., Beehr, D. E., Forster, M. D., Lanehart, R. E., Malainey, M. E., Parr, R. E., Rider, M., Solazzo, C., & Yohe, R. M., II. (2007). Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. Journal of Archaeological Science, 34, 28–37. DOI: 10.1016/j.jas.2006.03.010. http://dx.doi.org/10.1016/j.jas.2006.03.01010.1016/j.jas.2006.03.010Suche in Google Scholar

[2] Barone, G., Mazzoleni, P., Spagnolo, G., & Aquilia, E. (2012). The transport amphorae of Gela: a multidisciplinary study on provenance and technological aspects. Journal of Archaeological Science, 39, 11–22. DOI: 10.1016/j.jas.2011.06.018. http://dx.doi.org/10.1016/j.jas.2011.06.01810.1016/j.jas.2011.06.018Suche in Google Scholar

[3] Beck, C. W., Smart, C. J., & Ossenkop, D. J. (1989). Residues and linings in ancient Mediterranean transport amphoras. In R. O. Allen (Ed.), Archeological chemistry IV — Advances in chemistry (pp. 369–380). Washington, D.C., USA: American Chemical Society. Suche in Google Scholar

[4] Bevin, C. J., Dambergs, R. G., Fergusson, A. J., & Cozzolino, D. (2008). Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Analytica Chimica Acta, 621, 19–23. DOI: 10.1016/j.aca.2007.10.042. http://dx.doi.org/10.1016/j.aca.2007.10.04210.1016/j.aca.2007.10.042Suche in Google Scholar PubMed

[5] Copley, M. S., Rose, P. J., Clapham, A., Edwards, D. N., Horton, M. C., & Evershed, R. P. (2001). Detection of palm fruit lipids in archaeological pottery from Qasr Ibrim, Egyptian Nubia. Proceedings of the Royal Society Series B, Biological Sciences, 268, 593–597. http://dx.doi.org/10.1098/rspb.2000.139410.1098/rspb.2000.1394Suche in Google Scholar PubMed PubMed Central

[6] Copley, M. S., Hansel, F. A., Sadr, K., & Evershed, R. P. (2004). Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science, 100, 279–283. Suche in Google Scholar

[7] Copley, M. S., Bland, H. A., Rose, P., Horton, M., & Evershed, R. P. (2005a). Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst, 130, 860–871. DOI: 10.1039/b500403a. http://dx.doi.org/10.1039/b500403a10.1039/b500403aSuche in Google Scholar PubMed

[8] Copley, M. S., Berstan, R., Mukherjee, A. J., Dudd, S. N., Straker, V., Payne, S., & Evershed, R. P. (2005b). Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science, 32, 523–546. DOI: 10.1016/j.jas.2004.08.006. http://dx.doi.org/10.1016/j.jas.2004.08.00610.1016/j.jas.2004.08.006Suche in Google Scholar

[9] Craig, O. E., Forster, M., Andersen, S. H., Koch, E., Crombé, P., Milner, N. J., Stern, B., Bailey, G. N., & Heron, C. P. (2007). Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry, 49, 135–142. DOI: 10.1111/j.1475-4754.2007.00292.x. http://dx.doi.org/10.1111/j.1475-4754.2007.00292.x10.1111/j.1475-4754.2007.00292.xSuche in Google Scholar

[10] Damjanović, L., Holclajtner-Antunović, I., Mioč, U. B., Bikić, V., Milovanović, D., & Radosavljević-Evans, I. (2011). Archaeometric study of medieval pottery excavated at Stari (Old) Ras, Serbia. Journal of Archaeological Science, 38, 818–828. DOI: 10.1016/j.jas.2010.11.004. http://dx.doi.org/10.1016/j.jas.2010.11.00410.1016/j.jas.2010.11.004Suche in Google Scholar

[11] Evershed, R. P., Vaughan, S. J., Dudd, S. N., & Soles, J. S. (1997). Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity, 71, 979–985. 10.1017/S0003598X00085860Suche in Google Scholar

[12] Evershed, R. P., Dudd, S. N., Anderson-Stojanovic, V. R., & Gebhard, E. R. (2003). New chemical evidence for the use of combed ware pottery vessels as beehives in ancient Greece. Journal of Archaeological Science, 31, 1–12. DOI: 10.1006/jasc.2001.0827. http://dx.doi.org/10.1006/jasc.2001.082710.1006/jasc.2001.0827Suche in Google Scholar

[13] Evershed, R. P. (2008a). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 50, 895–924. DOI: 10.1111/j.1475-4754.2008.00446.x. http://dx.doi.org/10.1111/j.1475-4754.2008.00446.x10.1111/j.1475-4754.2008.00446.xSuche in Google Scholar

[14] Evershed, R. P. (2008b). Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology, 40, 26–47. DOI: 10.1080/00438240801889373. http://dx.doi.org/10.1080/0043824080188937310.1080/00438240801889373Suche in Google Scholar

[15] Froh, J. (2004). Archaeological ceramics studied by scanning electron microscopy. Hyperfine Interactions, 154, 159–176. http://dx.doi.org/10.1023/B:HYPE.0000032074.98045.cc10.1023/B:HYPE.0000032074.98045.ccSuche in Google Scholar

[16] Galli, V., & Barbas, C. (2004). Capillary electrophoresis for the analysis of short-chain organic acids in coffee. Journal of Chromatography A, 1032, 299–304. DOI: 10.1016/j.chroma.2003.09.028. http://dx.doi.org/10.1016/j.chroma.2003.09.02810.1016/j.chroma.2003.09.028Suche in Google Scholar PubMed

[17] Guasch-Jané, M. R., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2006a). First evidence for white wine in ancient Egypt from Tutankhamun’s tomb. Journal of Archaeological Science, 33, 1075–1080. DOI: 10.1016/j.jas.2005.11.012. http://dx.doi.org/10.1016/j.jas.2005.11.01210.1016/j.jas.2005.11.012Suche in Google Scholar

[18] Guasch-Jané, M. R., Andrés-Lacueva, C., Jáuregui, O., & Lamuela-Raventós, R. M. (2006b). The origin of the ancient Egyptian drink Shedeh revealed using LC/MS/MS. Journal of Archaeological Science, 33, 98–101. DOI: 10.1016/j.jas.2005.06.013. http://dx.doi.org/10.1016/j.jas.2005.06.01310.1016/j.jas.2005.06.013Suche in Google Scholar

[19] Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892–899. DOI: 10.1002/jrs.1518. http://dx.doi.org/10.1002/jrs.151810.1002/jrs.1518Suche in Google Scholar

[20] Hansel, F. A., Copley, M. S., Madureira, L. A. S., & Evershed, R. P. (2004). Thermally produced ω-(o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters, 45, 2999–3002. DOI: 10.1016/j.tetlet.2004.01.111. http://dx.doi.org/10.1016/j.tetlet.2004.01.11110.1016/j.tetlet.2004.01.111Suche in Google Scholar

[21] Izzo, F. C., Zendri, E., Bernardi, A., Balliana, E., & Sgobbi, M. (2013). The study of pitch via gas chromatography-mass spectrometry and Fourier-transformed infrared spectroscopy: the case of the Roman amphoras from Monte Poro, Calabria (Italy). Journal of Archaeological Science, 40, 595–600. DOI: 10.1016/j.jas.2012.06.017. http://dx.doi.org/10.1016/j.jas.2012.06.01710.1016/j.jas.2012.06.017Suche in Google Scholar

[22] Legnaioli, S., Anabitarte Garcia, F., Andreotti, A., Bramanti, E., Díaz Pace, D., Formola, S., Lorenzetti, G., Martini, M., Pardini, L., Ribechini, E., Sibili, E., Spiniello, R., & Palleschi, V. (2013). Multi-technique study of a ceramic archaeological artifact and its content. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 100, 144–148. DOI: 10.1016/j.saa.2012.04.009. http://dx.doi.org/10.1016/j.saa.2012.04.00910.1016/j.saa.2012.04.009Suche in Google Scholar PubMed

[23] Mills, J., & White, R. (1989). The identity of the resins from the late Bronze Age shipwreck at Ulu Burun (Kaş). Archaeometry, 31, 37–44. DOI: 10.1111/j.1475-4754.1989.tb01054.x. http://dx.doi.org/10.1111/j.1475-4754.1989.tb01054.x10.1111/j.1475-4754.1989.tb01054.xSuche in Google Scholar

[24] Mukherjee, A. J., Gibson, A. M., & Evershed, R. P. (2008). Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds. Journal of Archaeological Science, 35, 2059–2073. DOI: 10.1016/j.jas.2008.01.010. http://dx.doi.org/10.1016/j.jas.2008.01.01010.1016/j.jas.2008.01.010Suche in Google Scholar

[25] Palanivel, R., & Rajesh Kumar, U. (2011). Thermal and spectroscopic analysis of ancient potteries. Romanian Journal of Physics, 56, 195–208. Suche in Google Scholar

[26] Pecci, A., Giorgi, G., Salvini, L., & Cau Ontiveros, M. Á. (2013). Identifying wine markers in ceramics and plasters using gas chromatography-mass spectrometry. Experimental, and archaeological materials. Journal of Archaeological Science, 40, 109–115. DOI: 10.1016/j.jas.2012.05.001. http://dx.doi.org/10.1016/j.jas.2012.05.00110.1016/j.jas.2012.05.001Suche in Google Scholar

[27] Peres, R.G., Moraes, E. P., Micke, G. A., Tonin, F.G., Tavares, M. F. M., & Rodriguez-Amaya, D. B. (2009). Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection. Food Control, 20, 548–552. DOI: 10.1016/j.foodcont.2008.08.004. http://dx.doi.org/10.1016/j.foodcont.2008.08.00410.1016/j.foodcont.2008.08.004Suche in Google Scholar

[28] Regert, M. (2011). Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrometry Reviews, 30, 177–220. DOI: 10.1002/mas.20271. http://dx.doi.org/10.1002/mas.2027110.1002/mas.20271Suche in Google Scholar PubMed

[29] Roberts, S., Sofaer, J., & Kiss, V. (2008). Characterization and textural analysis of Middle Bronze Age Transdanubian inlaid wares of the Encrusted Pottery Culture, Hungary: a preliminary study. Journal of Archaeological Science, 35, 322–330. DOI: 10.1016/j.jas.2007.03.013. http://dx.doi.org/10.1016/j.jas.2007.03.01310.1016/j.jas.2007.03.013Suche in Google Scholar

[30] Robinson, J. (2006). The Oxford companion to wine (3rd ed.). Oxford, UK: Oxford University Press. Suche in Google Scholar

[31] Romanus, K., Baeten, J., Poblome, J., Accardo, S., Degryse, P., Jacobs, P., De Vos, D., & Waelkens, M. (2009). Wine and olive oil permeation in pitched and non-pitched ceramics: relation with results from archaeological amphorae from Sagalassos, Turkey. Journal of Archaeological Science, 36, 900–909. DOI: 10.1016/j.jas.2008.11.024. http://dx.doi.org/10.1016/j.jas.2008.11.02410.1016/j.jas.2008.11.024Suche in Google Scholar

[32] Rovio, S., Sirén, K., & Sirén, H. (2011). Application of capillary electrophoresis to determine metal cations, anions, organic acids, and carbohydrates in some Pinot Noir red wines. Food Chemistry, 124, 1194–1200. DOI: 10.1016/j.foodchem.2010.07.044. http://dx.doi.org/10.1016/j.foodchem.2010.07.04410.1016/j.foodchem.2010.07.044Suche in Google Scholar

[33] Santalad, A., Teerapornchaisit, P., Burakham, R., & Srijaranai, S. (2007). Capillary zone electrophoresis of organic acids in beverages. LWT — Food Science and Technology, 40, 1741–1746. DOI: 10.1016/j.lwt.2007.01.007. http://dx.doi.org/10.1016/j.lwt.2007.01.00710.1016/j.lwt.2007.01.007Suche in Google Scholar

[34] Stern, B., Heron, C., Corr, L., Serpico, M., & Bourriau, J. (2003). Compositional variation in aged and heated Pistacia resin found in Late Bronze Age Canaanite amphorae and bowls from Amarna, Egypt. Archaeometry, 45, 457–469. DOI: 10.1111/1475-4754.00121. http://dx.doi.org/10.1111/1475-4754.0012110.1111/1475-4754.00121Suche in Google Scholar

[35] Tite, M. S. (1992). The impact of electron microscopy on ceramic studies. Proceedings of the British Academy, 22, 111–131. Suche in Google Scholar

[36] Truica, G. I., Teodor, E. D., & Radu, G. L. (2013). Organic acids assessments in medicinal plants by capillary electrophoresis. Revue Roumaine de Chimie, 58. (in press) Suche in Google Scholar

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0559-1/pdf
Button zum nach oben scrollen