Startseite Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media

  • Hamzeh Kiyani EMAIL logo und Fatemeh Ghorbani
Veröffentlicht/Copyright: 15. April 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

2-Amino-4-aryl-4H-benzo[h]chromenes and 3-amino-1-aryl-1H-benzo[f]chromenes were prepared by treating cyano-methylene compounds (malononitrile or ethyl cyanoacetate), substituted aromatic aldehydes, and naphtholic compounds in the presence of potassium phthalimide as a green, mild, efficient, and commercially available organocatalyst in aqueous media. The procedure was readily conducted and affords remarkable advantages such as safety, short reaction times, environmentally benign milder reaction conditions, no organic solvent required, and high yields.

[1] Abrunhosa, L., Costa, M., Areias, F., Venâncio, A., & Proenąa, F. (2007). Antifungal activity of a novel chromene dimer. Journal of Industrial Microbiology & Biotechnology, 34, 787–792. DOI: 10.1007/s10295-007-0255-z. http://dx.doi.org/10.1007/s10295-007-0255-z10.1007/s10295-007-0255-zSuche in Google Scholar

[2] Albadi, J., Mansournezhad, A., & Darvishi-Paduk, M. (2013). Poly(4-vinylpyridine): As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives. Chinese Chemical Letters, 24, 208–210. DOI: 10.1016/j.cclet.2013.01.020. http://dx.doi.org/10.1016/j.cclet.2013.01.02010.1016/j.cclet.2013.01.020Suche in Google Scholar

[3] Bedair, A. H., Emam, H. A., El-Hady, N. A., Ahmed, K. A. R., & El-Agrody, A. M. (2001). Synthesis and antimicrobial activities of novel naphtho[2,1-b]pyran, pyrano[2,3-d]pyrimidine and pyrano[3,2-e][1,2,4]triazolo[2,3-c]-pyrimidine derivatives. Il Farmaco, 56, 965–973. DOI: 10.1016/s0014-827x(01)01168-5. http://dx.doi.org/10.1016/S0014-827X(01)01168-510.1016/S0014-827X(01)01168-5Suche in Google Scholar

[4] Bihani, M., Bora, P. P., Bez, G., & Askari, H. (2013). Amberlyst A21: A reusable solid catalyst for green synthesis of pyran annulated heterocycles at room temperature. Comptes Rendus Chimie, 16, 419–426. DOI: 10.1016/j.crci.2012.11.018. http://dx.doi.org/10.1016/j.crci.2012.11.01810.1016/j.crci.2012.11.018Suche in Google Scholar

[5] Birch, K. A., Heath, W. F., Hermeling, R. N., Johnston, C. M., Stramm, L., Dell, C., Smith, C., Williamson, J. R., & Reifel-Miller, A. (1996). LY290181, an inhibitor of diabetes-induced vascular dysfunction, blocks protein kinase C-stimulated transcriptional activation through inhibition of transcription factor binding to a phorbol response element. Diabetes, 45, 642–650. DOI: 10.2337/diab.45.5.642. http://dx.doi.org/10.2337/diab.45.5.64210.2337/diab.45.5.642Suche in Google Scholar PubMed

[6] Brahmachari, G., & Das, S. (2012). Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Letters, 53, 1479–1484. DOI: 10.1016/j.tetlet.2012.01.042. http://dx.doi.org/10.1016/j.tetlet.2012.01.04210.1016/j.tetlet.2012.01.042Suche in Google Scholar

[7] Candeias, N. R., Cal, P. M. S. D., André, V., Duarte, M. T., Veiros, L. F., & Gois, P. M. P. (2010). Water as the reaction medium for multicomponent reactions based on boronic acids. Tetrahedron, 66, 2736–2745. DOI: 10.1016/j.tet.2010.01.084. http://dx.doi.org/10.1016/j.tet.2010.01.08410.1016/j.tet.2010.01.084Suche in Google Scholar

[8] Chan, S. H., Lam, K. H., Chui, C. H., Gambari, R., Yuen, M. C. W., Wong, R. S. M., Cheng, G. Y. M., Lau, F. Y., Au, Y. K., Cheng, C. H., Lai, P. B. S., Kan, C.W., Kok, S. H. L., Tang, J. C. O., & Chan, A. S. C. (2009). The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines. European Journal of Medicinal Chemistry, 44, 2736–2740. DOI: 10.1016/j.ejmech.2008.10.024. http://dx.doi.org/10.1016/j.ejmech.2008.10.02410.1016/j.ejmech.2008.10.024Suche in Google Scholar PubMed

[9] Chanda, A., & Fokin, V. V. (2009). Organic synthesis “on water”. Chemical Reviews, 109, 725–748. DOI: 10.1021/cr800448q. http://dx.doi.org/10.1021/cr800448q10.1021/cr800448qSuche in Google Scholar PubMed PubMed Central

[10] Chitra, S., Paul, N., Muthusubramanian, S., & Manisankar, P. (2011). A facile, water mediated, microwave-assisted synthesis of 4,6-diaryl-2,3,3a,4-tetrahydro-1H-pyrido[3,2,1-jk]carbazoles by a domino Fischer indole reaction-intramolecular cyclization sequence. Green Chemistry, 13, 2777–2785.DOI: 10.1039/c1gc15483d. http://dx.doi.org/10.1039/c1gc15483d10.1039/c1gc15483dSuche in Google Scholar

[11] Cozzi, P. G., & Hayashi, Y. (2012). Flowing and vibrant organocatalysis. ChemCatChem, 4, 887–889. DOI: 10.1002/cctc.201200331. http://dx.doi.org/10.1002/cctc.20120033110.1002/cctc.201200331Suche in Google Scholar

[12] Dalko, P. I., & Moisan, L. (2004). In the golden age of organocatalysis. Angewandte Chemie International Edition, 43, 5138–5175. DOI: 10.1002/anie.200400650. http://dx.doi.org/10.1002/anie.20040065010.1002/anie.200400650Suche in Google Scholar PubMed

[13] Dalko, P. I. (2007). Enantioselective organocatalysis: Reactions and experimental procedures. Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/978352761094510.1002/9783527610945Suche in Google Scholar

[14] Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry — A European Journal, 15, 3920–3935. DOI: 10.1002/chem.200900060. http://dx.doi.org/10.1002/chem.20090006010.1002/chem.200900060Suche in Google Scholar PubMed

[15] de Graaff, C., Ruijter, E., & Orru, R. V. A. (2012). Recent developments in asymmetric multicomponent reactions. Chemical Society Reviews, 41, 3969–4009. DOI: 10.1039/c2cs15361k. http://dx.doi.org/10.1039/c2cs15361k10.1039/c2cs15361kSuche in Google Scholar PubMed

[16] Dekamin, M. G., & Karimi, Z. (2009). Activation of trimethylsilyl cyanide by potassium phthalimide for facile synthesis of TMS-protected cyanohydrins. Journal of Organometallic Chemistry, 694, 1789–1794. DOI: 10.1016/j.jorganchem.2009.01.058. http://dx.doi.org/10.1016/j.jorganchem.2009.01.05810.1016/j.jorganchem.2009.01.058Suche in Google Scholar

[17] Dekamin, M. G., Sagheb-Asl, S., & Naimi-Jamal, M. R. (2009). An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Letters, 50, 4063–4066. DOI: 10.1016/j.tetlet.2009.04.090. http://dx.doi.org/10.1016/j.tetlet.2009.04.09010.1016/j.tetlet.2009.04.090Suche in Google Scholar

[18] Dekamin, M. G., Eslami, M., & Maleki, A. (2013). Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water. Tetrahedron, 69, 1074–1085. DOI: 10.1016/j.tet.2012.11.068. http://dx.doi.org/10.1016/j.tet.2012.11.06810.1016/j.tet.2012.11.068Suche in Google Scholar

[19] Dömling, A., Wang, W., & Wang, K. (2012). Chemistry and biology of multicomponent reactions. Chemical Reviews, 112, 3083–3135. DOI: 10.1021/cr100233r. http://dx.doi.org/10.1021/cr100233r10.1021/cr100233rSuche in Google Scholar PubMed PubMed Central

[20] Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis: From infancy to adolescence. Angewandte Chemie International Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684. http://dx.doi.org/10.1002/anie.20070468410.1002/anie.200704684Suche in Google Scholar PubMed

[21] El-Agrody, A. M., Abd-Rabboh, H. S. M., & Al-Ghamdi, A. M. (2013a). Synthesis, antitumor activity, and structure-activity relationship of some 4H-pyrano[3,2-h]quinoline and 7H-pyrimido[4′,5′:6,5]pyrano[3,2-h]quinoline derivatives. Medicinal Chemistry Research, 22, 1339–1355. DOI: 10.1007/s00044-012-0142-7. http://dx.doi.org/10.1007/s00044-012-0142-710.1007/s00044-012-0142-7Suche in Google Scholar

[22] El-Agrody, A. M., Fouda, A. M., & Khattab, E. S. A. E. H. (2013b). Synthesis, antitumor activity of 2-amino-4Hbenzo[h]chromene derivatives, and structure-activity relationships of the 3- and 4-positions. Medicinal Chemistry Research, 22, 6105–6120. DOI: 10.1007/s00044-013-0602-8. http://dx.doi.org/10.1007/s00044-013-0602-810.1007/s00044-013-0602-8Suche in Google Scholar

[23] El-Agrody, A. M., Fouda, A. M., & Al-Dies, A. A. M. (2014). Studies on the synthesis, in vitro antitumor activity of 4H-benzo[h]chromene, 7H-benzo[h]chromene[2,3-d]pyrimidine derivatives and structure-activity relationships of the 2-,3- and 2,3-positions. Medicinal Chemistry Research, in press. DOI: 10.1007/s00044-013-0904-x. 10.1007/s00044-013-0904-xSuche in Google Scholar

[24] Gu, Y. (2012). Multicomponent reactions in unconventional solvents: state of the art. Green Chemistry, 14, 2091–2128. DOI: 10.1039/c2gc35635j. http://dx.doi.org/10.1039/c2gc35635j10.1039/c2gc35635jSuche in Google Scholar

[25] Heravi, M. M., Bakhtiari, K., Zadsirjan, V., Bamoharram, F. F., & Heravi, O. M. (2007). Aqua mediated synthesis of substituted 2-amino-4H-chromenes catalyzed by green and reusable Preyssler heteropolyacid. Bioorganic & Medicinal Chemistry Letters, 17, 4262–4265. DOI: 10.1016/j.bmcl.2007.05.023. http://dx.doi.org/10.1016/j.bmcl.2007.05.02310.1016/j.bmcl.2007.05.023Suche in Google Scholar

[26] Jiang, B., Wang, X., Shi, F., Tu, S. J., & Li, G. (2011). New multicomponent cyclization: domino synthesis of pentasubstituted pyridines under solvent-free conditions. Organic & Biomolecular Chemistry, 9, 4025–4028. DOI: 10.1039/c0ob01258k. 10.1039/c0ob01258kSuche in Google Scholar

[27] Jin, T. S., Xiao, J. C., Wang, S. J., & Li, T. S. (2004). Ultrasound-assisted synthesis of 2-amino-2-chromenes with cetyltrimethylammonium bromide in aqueous media. Ultrasonics Sonochemistry, 11, 393–397. DOI: 10.1016/j.ultsonch.2003.10.002. 10.1016/j.ultsonch.2003.10.002Suche in Google Scholar

[28] Karami, B., Khodabakhshi, S., & Eskandari, K. (2013). Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate. Chemical Papers, 67, 1474–1478. DOI: 10.2478/s11696-013-0411-z. http://dx.doi.org/10.2478/s11696-013-0411-z10.2478/s11696-013-0411-zSuche in Google Scholar

[29] Kathrotiya, H. G., & Patel, M. P. (2012). Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Medicinal Chemistry Research, 21, 3406–3416. DOI: 10.1007/s00044-011-9861-4. http://dx.doi.org/10.1007/s00044-011-9861-410.1007/s00044-011-9861-4Suche in Google Scholar

[30] Khafagy, M. M., Abd El-Wahab, A. H. F., Eid, F. A., & El-Agrody, A. M. (2002). Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Il Farmaco, 57, 715–722. DOI: 10.1016/s0014-827x(02)01263-6. http://dx.doi.org/10.1016/S0014-827X(02)01263-610.1016/S0014-827X(02)01263-6Suche in Google Scholar

[31] Khazaei, A., Zolfigol, M. A., Mokhlesi, M., & Pirveysian, M. (2012). Citric acid as a trifunctional organocatalyst for thiocyanation of aromatic and heteroaromatic compounds in aqueous media. Canadian Journal of Chemistry, 90, 427–432. DOI: 10.1139/v2012-013. http://dx.doi.org/10.1139/v2012-01310.1139/v2012-013Suche in Google Scholar

[32] Khurana, J. M., Nand, B., & Saluja, P. (2010). DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo [g]chromenes in aqueous medium. Tetrahedron, 66, 5637–5641. DOI: 10.1016/j.tet.2010.05.082. http://dx.doi.org/10.1016/j.tet.2010.05.08210.1016/j.tet.2010.05.082Suche in Google Scholar

[33] Kidwai, M., Saxena, S., Khan, M. K. R., & Thukral, S. S. (2005). Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 15, 4295–4298. DOI: 10.1016/j.bmcl.2005.06.041. http://dx.doi.org/10.1016/j.bmcl.2005.06.04110.1016/j.bmcl.2005.06.041Suche in Google Scholar PubMed

[34] Kiyani, H., & Ghiasi, M. (2014). Potassium phthalimide: An efficient and green organocatalyst for the synthesis of 4-aryl-7-(arylmethylene)-3,4,6,7-tetrahydro-1H-cyclopenta[d]pyrimidin-2(5H)-ones/thiones under solvent-free conditions. Chinese Chemical Letters, 25, 313–316. DOI: 10.1016/j.cclet.2013.11.042. http://dx.doi.org/10.1016/j.cclet.2013.11.04210.1016/j.cclet.2013.11.042Suche in Google Scholar

[35] Kiyani, H., & Ghorbani, F. (2014). Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium. Journal of Saudi Chemical Society, in press. DOI: 10.1016/j.jscs.2013.11.002. 10.1016/j.jscs.2013.11.002Suche in Google Scholar

[36] Kumar, D., Reddy, V. B., Mishra, B. G., Rana, R. K., Nadagouda, M. N., & Varma, R. S. (2007). Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron, 63, 3093–3097. DOI: 10.1016/j.tet.2007.02.019. http://dx.doi.org/10.1016/j.tet.2007.02.01910.1016/j.tet.2007.02.019Suche in Google Scholar

[37] Kumaravel, K., & Vasuki, G. (2009). Multi-component reactions in water. Current Organic Chemistry, 13, 1820–1841. DOI: 10.2174/138527209789630514. http://dx.doi.org/10.2174/13852720978963051410.2174/138527209789630514Suche in Google Scholar

[38] Langer, P. (2002). Cyclization reactions of 1,3-bis-silyl enol ethers and related masked dianions. Synthesis, 2002, 441–459. DOI: 10.1055/s-2002-20954. http://dx.doi.org/10.1055/s-2002-2095410.1055/s-2002-20954Suche in Google Scholar

[39] Li, C. J., & Chan, T. H. (2007). Comprehensive organic reactions in aqueous media (2nd ed.). Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/978047013144210.1002/9780470131442Suche in Google Scholar

[40] Lindström, U. M. (2002). Stereoselective organic reactions in water. Chemical Reviews, 102, 2751–2772. DOI: 10.1021/cr010122p. http://dx.doi.org/10.1021/cr010122p10.1021/cr010122pSuche in Google Scholar PubMed

[41] Maggi, R., Ballini, R., Sartori, G., & Sartorio, R. (2004). Basic alumina catalysed synthesis of substituted 2-amino-2-chromenes via three-component reaction. Tetrahedron Letters, 45, 2297–2299. DOI: 10.1016/j.tetlet.2004.01.115. http://dx.doi.org/10.1016/j.tetlet.2004.01.11510.1016/j.tetlet.2004.01.115Suche in Google Scholar

[42] Manley-King, C. I., Bergh, J. J., & Petzer, J. P. (2011). Inhibition of monoamine oxidase by C5-substituted phthalimide analogues. Bioorganic & Medicinal Chemistry, 19, 4829–4840. DOI: 10.1016/j.bmc.2011.06.070. http://dx.doi.org/10.1016/j.bmc.2011.06.07010.1016/j.bmc.2011.06.070Suche in Google Scholar PubMed

[43] Mehrabi, H., & Kamali, N. (2012). Efficient and eco-friendly synthesis of 2-amino-4H-chromene derivatives using catalytic amount of tetrabutylammonium chloride (TBAC) in water and solvent-free conditions. Journal of the Iranian Chemical Society, 9, 599–605. DOI: 10.1007/s13738-012-0073-8. http://dx.doi.org/10.1007/s13738-012-0073-810.1007/s13738-012-0073-8Suche in Google Scholar

[44] Mekheimer, R. A., & Sadek, K. U. (2009a). Microwaveassisted reactions: Three-component process for the synthesis of 2-amino-2-chromenes under microwave heating. Chinese Chemical Letters, 20, 271–274. DOI: 10.1016/j.cclet.2008.11.025. http://dx.doi.org/10.1016/j.cclet.2008.11.02510.1016/j.cclet.2008.11.025Suche in Google Scholar

[45] Mekheimer, R. A., & Sadek, K. U. (2009b). Microwave-assisted reactions: Three component process for the synthesis of 2-amino-2-chromenes under microwave heating. Journal of Heterocyclic Chemistry, 46, 149–151. DOI: 10.1002/jhet.13. http://dx.doi.org/10.1002/jhet.1310.1002/jhet.13Suche in Google Scholar

[46] Mondal, J., Modak, A., Nandi, M., Uyama, H., & Bhaumik, A. (2012). Triazine functionalized ordered mesoporous organosilica as a novel organocatalyst for the facile one-pot synthesis of 2-amino-4H-chromenes under solvent-free conditions. RSC Advances, 2, 11306–11317. DOI: 10.1039/c2ra22291d. http://dx.doi.org/10.1039/c2ra22291d10.1039/c2ra22291dSuche in Google Scholar

[47] Mosaddegh, E. (2013). Ultrasonic-assisted preparation of nano eggshell powder: A novel catalyst in green and high efficient synthesis of 2-aminochromenes. Ultrasonics Sonochemistry, 20, 1436–1441. DOI: 10.1016/j.ultsonch.2013.04.008. http://dx.doi.org/10.1016/j.ultsonch.2013.04.00810.1016/j.ultsonch.2013.04.008Suche in Google Scholar PubMed

[48] Motoshima, K., Noguchi-Yachide, T., Sugita, K., Hashimoto, Y., & Ishikawa, M. (2009). Separation of α-glucosidaseinhibitory and liver X receptor-antagonistic activities of phenethylphenyl phthalimide analogs and generation of LXRα-selective antagonists. Bioorganic & Medicinal Chemistry, 17, 5001–5014. DOI: 10.1016/j.bmc.2009.05.066. http://dx.doi.org/10.1016/j.bmc.2009.05.06610.1016/j.bmc.2009.05.066Suche in Google Scholar PubMed

[49] Murthy, S. N., Madhav, B., Kumar, A. V., Rao, K. R., & Nageswar, Y. V. D. (2009). Multicomponent approach towards the synthesis of substituted pyrroles under supramolecular catalysis using β-cyclodextrin as a catalyst in water under neutral conditions. Helvetica Chimica Acta, 92, 2118–2124. DOI: 10.1002/hlca.200900098. http://dx.doi.org/10.1002/hlca.20090009810.1002/hlca.200900098Suche in Google Scholar

[50] Naimi-Jamal, M. R., Mashkouri, S., & Sharifi, A. (2010). An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Molecular Diversity, 14, 473–477. DOI: 10.1007/s11030-010-9246-5. http://dx.doi.org/10.1007/s11030-010-9246-510.1007/s11030-010-9246-5Suche in Google Scholar PubMed

[51] Narender, T., Shweta, & Gupta, S. (2004). A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity. Bioorganic & Medicinal Chemistry Letters, 14, 3913–3916. DOI: 10.1016/j.bmcl.2004.05.071. http://dx.doi.org/10.1016/j.bmcl.2004.05.07110.1016/j.bmcl.2004.05.071Suche in Google Scholar

[52] Niknam, K., & Jamali, A. (2012). Silica-bonded N-propylpiperazine sodium n-propionate as recyclable basic catalyst for synthesis of 3,4-dihydropyrano[c]chromene derivatives and biscoumarins. Chinese Journal of Catalysis, 33, 1840–1849. DOI: 10.1016/s1872-2067(11)60457-9. http://dx.doi.org/10.1016/S1872-2067(11)60457-910.1016/S1872-2067(11)60457-9Suche in Google Scholar

[53] Ogawa, C., & Kobayashi, S. (2007). Acid catalysis in water. In U. M. Lindström (Ed.), Organic reactions in water: Principles, strategies and applications (Chapter 3, pp. 60–91). Oxford, UK: Blackwell Publishing. http://dx.doi.org/10.1002/9780470988817.ch310.1002/9780470988817.ch3Suche in Google Scholar

[54] Pascale, R., Carocci, A., Catalano, A., Lentini, G., Spagnoletta, A., Cavalluzzi, M. M., De Santis, F., De Palma, A., Scalera, V., & Franchini, C. (2010). New N-(phenoxydecyl)phthalimide derivatives displaying potent inhibition activity towards α-glucosidase. Bioorganic & Medicinal Chemistry, 18, 5903–5914. DOI: 10.1016/j.bmc.2010.06.088. http://dx.doi.org/10.1016/j.bmc.2010.06.08810.1016/j.bmc.2010.06.088Suche in Google Scholar PubMed

[55] Pirrung, M. C. (2006). Acceleration of organic reactions through aqueous solvent effects. Chemistry — A European Journal, 12, 1312–1317. DOI: 10.1002/chem.200500959. http://dx.doi.org/10.1002/chem.20050095910.1002/chem.200500959Suche in Google Scholar PubMed

[56] Poupaert, J., Carato, P., & Colacino, E. (2005). 2(3H)-Benzoxazolone and bioisosters as ”privileged scaffold” in the design of pharmacological probes. Current Medicinal Chemistry, 12, 877–885. DOI: 10.2174/0929867053507388. http://dx.doi.org/10.2174/092986705350738810.2174/0929867053507388Suche in Google Scholar PubMed

[57] Ramn, D. J., & Yus, M. (2005). Asymmetric multicomponent reactions (AMCRs): The new frontier. Angewandte Chemie International Edition, 44, 1602–1634. DOI: 10.1002/anie.200460548. http://dx.doi.org/10.1002/anie.20046054810.1002/anie.200460548Suche in Google Scholar PubMed

[58] Ren, Y. M., & Cai, C. (2008). Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium. Catalysis Communications, 9, 1017–1020. DOI: 10.1016/j.catcom.2007.10.002. http://dx.doi.org/10.1016/j.catcom.2007.10.00210.1016/j.catcom.2007.10.002Suche in Google Scholar

[59] Sabitha, G., Bhikshapathi, M., Nayak, S., Srinivas, R., & Yadav, J. S. (2011). Triton B catalyzed three-component, onepot synthesis of 2-amino-2-chromenes at ambient temperature. Journal of Heterocyclic Chemistry, 48, 267–271. DOI: 10.1002/jhet.544. http://dx.doi.org/10.1002/jhet.54410.1002/jhet.544Suche in Google Scholar

[60] Salzberg, P. L., & Supniewski, J. V. (1941). β-Bromoethylphthalimide. In H. Gilman, & A. H. Blatt (Eds.), Organic syntheses (Coll. Vol. 1, p. 119–121). New York, NY, USA: Wiley. Suche in Google Scholar

[61] Samantaray, S., Pradhan, D. K., Hota, G., & Mishra, B. G. (2012). Catalytic application of CeO2-CaO nanocomposite oxide synthesized using amorphous citrate process toward the aqueous phase one pot synthesis of 2-amino-2-chromenes. Chemical Engineering Journal, 193–194, 1–9. DOI: 10.1016/j.cej.2012.04.011. http://dx.doi.org/10.1016/j.cej.2012.04.01110.1016/j.cej.2012.04.011Suche in Google Scholar

[62] Shinde, S., Rashinkar, G., & Salunkhe, R. (2013). DABCO entrapped in agar-agar: A heterogeneous gelly catalyst for multi-component synthesis of 2-amino-4H-chromenes. Journal of Molecular Liquids, 178, 122–126. DOI: 10.1016/j.molliq.2012.10.019. http://dx.doi.org/10.1016/j.molliq.2012.10.01910.1016/j.molliq.2012.10.019Suche in Google Scholar

[63] Simon, C., Constantieux, T., & Rodriguez, J. (2004). Utilisation of 1,3-dicarbonyl derivatives in multicomponent reactions. European Journal of Organic Chemistry, 2004, 4957–4980. DOI: 10.1002/ejoc.200400511. http://dx.doi.org/10.1002/ejoc.20040051110.1002/ejoc.200400511Suche in Google Scholar

[64] Singh, P., Kaur, S., Kumar, V., Bedi, P. M. S., Mahajan, M. P., Sehar, I., Pal, H. C., & Saxena, A. K. (2011). Synthesis and in vitro cytotoxic evaluation of N-alkylbromo and Nalkylphthalimido-isatins. Bioorganic & Medicinal Chemistry Letters, 21, 3017–3020. DOI: 10.1016/j.bmcl.2011.03.043. http://dx.doi.org/10.1016/j.bmcl.2011.03.04310.1016/j.bmcl.2011.03.043Suche in Google Scholar

[65] Singh, M. S., & Chowdhury, S. (2012). Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Advances, 2, 4547–4592. DOI: 10.1039/c2ra01056a. http://dx.doi.org/10.1039/c2ra01056a10.1039/c2ra01056aSuche in Google Scholar

[66] Smith, M. B., & March, J. (2001). March’s advanced organic chemistry: Reactions, mechanisms, and structure (5th ed.). New York, NY, USA: Wiley. Suche in Google Scholar

[67] Solhy, A., Elmakssoudi, A., Tahir, R., Karkouri, M., Larzek, M., Bousmina, M., & Zahouily, M. (2010). Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7. Green Chemistry, 12, 2261–2267. DOI: 10.1039/c0gc00387e. http://dx.doi.org/10.1039/c0gc00387e10.1039/c0gc00387eSuche in Google Scholar

[68] Stewart, S. G., Spagnolo, D., Polomska, M. E., Sin, M., Karimi, M., & Abraham, L. J. (2007). Synthesis and TNF expression inhibitory properties of new thalidomide analogues derived via Heck cross coupling. Bioorganic & Medicinal Chemistry Letters, 17, 5819–5824. DOI: 10.1016/j.bmcl.2007.08.042. http://dx.doi.org/10.1016/j.bmcl.2007.08.04210.1016/j.bmcl.2007.08.042Suche in Google Scholar

[69] Strecker, D. (1850). Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Annalen der Chemie, 75, 27–45. DOI: 10.1002/jlac.18500750103. http://dx.doi.org/10.1002/jlac.1850075010310.1002/jlac.18500750103Suche in Google Scholar

[70] Surpur, M. P., Kshirsagar, S., & Samant, S. D. (2009). Exploitation of the catalytic efficacy of Mg/Al hydrotalcite for the rapid synthesis of 2-aminochromene derivatives via a multicomponent strategy in the presence of microwaves. Tetrahedron Letters, 50, 719–722. DOI: 10.1016/j.tetlet.2008.11.114. http://dx.doi.org/10.1016/j.tetlet.2008.11.11410.1016/j.tetlet.2008.11.114Suche in Google Scholar

[71] Syamala, M. (2009). Recent progress in three-component reactions. An update. Organic Preparations and Procedures International, 41, 1–68. DOI: 10.1080/00304940802711218. http://dx.doi.org/10.1080/0030494080271121810.1080/00304940802711218Suche in Google Scholar

[72] Tanabe, K., & Hölderich, W. F. (1999). Industrial application of solid acid-base catalysts. Applied Catalysis A: General, 181, 399–434. DOI: 10.1016/s0926-860x(98)00397-4. http://dx.doi.org/10.1016/S0926-860X(98)00397-410.1016/S0926-860X(98)00397-4Suche in Google Scholar

[73] Ugi, I. (2001). Recent progress in the chemistry of multicomponent reactions. Pure and Applied Chemistry, 73, 187–191. DOI: 10.1351/pac200173010187. http://dx.doi.org/10.1351/pac20017301018710.1351/pac200173010187Suche in Google Scholar

[74] Ulaczyk-Lesanko, A., & Hall, D. G. (2005). Wanted: new multicomponent reactions for generating libraries of polycyclic natural products. Current Opinion in Chemical Biology, 9, 266–276. DOI: 10.1016/j.cbpa.2005.04.003. http://dx.doi.org/10.1016/j.cbpa.2005.04.00310.1016/j.cbpa.2005.04.003Suche in Google Scholar PubMed

[75] Verma, S., Jain, S. L., & Sain, B. (2010). PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4-dihydropyrimidinones. Tetrahedron Letters, 51, 6897–6900. DOI: 10.1016/j.tetlet.2010.10.124. http://dx.doi.org/10.1016/j.tetlet.2010.10.12410.1016/j.tetlet.2010.10.124Suche in Google Scholar

[76] Wan, J. P., & Liu, Y. (2012). Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Advances, 2, 9763–9777. DOI: 10.1039/c2ra21406g. http://dx.doi.org/10.1039/c2ra21406g10.1039/c2ra21406gSuche in Google Scholar

[77] Xu, Z. B., & Qu, J. (2013). Hot water-promoted SN1 solvolysis reactions of allylic and benzylic alcohols. Chemistry — A European Journal, 19, 314–323. DOI: 10.1002/chem.201202886. http://dx.doi.org/10.1002/chem.20120288610.1002/chem.201202886Suche in Google Scholar PubMed

[78] Yu, Y., Guo, H., & Li, X. (2011). An improved procedure for the three-component synthesis of benzo[g]chromene derivatives using basic ionic liquid. Journal of Heterocyclic Chemistry, 48, 1264–1268. DOI: 10.1002/jhet.747. http://dx.doi.org/10.1002/jhet.74710.1002/jhet.747Suche in Google Scholar

[79] Zhong, C., & Shi, X. (2010). When organocatalysis meets transition-metal catalysis. European Journal of Organic Chemistry, 2010, 2999–3025. DOI: 10.1002/ejoc.201000004. http://dx.doi.org/10.1002/ejoc.20100000410.1002/ejoc.201000004Suche in Google Scholar

[80] Zhou, D., Ren, Z., Chen, J., Cao, W., & Deng, H. (2008). Solvent-free one-pot approach for synthesis of substituted 2-aminochromenes. Journal of Heterocyclic Chemistry, 45, 1865–1867. DOI: 10.1002/jhet.5570450649. http://dx.doi.org/10.1002/jhet.557045064910.1002/jhet.5570450649Suche in Google Scholar

[81] Zhou, Z. Q., Yang, F., Wu, L., & Zhang, A. (2012). Potassium phosphate tribasic trihydrate as catalyst for the rapid and clean one-pot synthesis of 2-amino-4H-chromenes under solvent-free conditions. Chemical Science Transactions, 1, 57–60. DOI: 10.7598/cst2012.125. http://dx.doi.org/10.7598/cst2012.12510.7598/cst2012.125Suche in Google Scholar

[82] Zhu, S. L., Ji, S. J., & Zhang, Y. (2007). A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron, 63, 9365–9372. DOI: 10.1016/j.tet.2007.06.113. http://dx.doi.org/10.1016/j.tet.2007.06.11310.1016/j.tet.2007.06.113Suche in Google Scholar

[83] Zwanenburg, B., & Mwakaboko, A. S. (2011). Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorganic & Medicinal Chemistry, 19, 7394–7400. DOI: 10.1016/j.bmc.2011.10.057. http://dx.doi.org/10.1016/j.bmc.2011.10.05710.1016/j.bmc.2011.10.057Suche in Google Scholar PubMed

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0554-6/html?lang=de
Button zum nach oben scrollen