Startseite Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy

  • Manuela Romas EMAIL logo , Anna Munoz , Daniel Mareci , Carlos Vidal , Silvia Curteanu und Daniel Sutiman
Veröffentlicht/Copyright: 15. April 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The inhibitory activity of caffeine (1,3,7-trimethyl xanthine) on artificial saliva was studied on a CoCrMo alloy using different electrochemical methods: open circuit potential (OCP), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The results show that caffeine produces an inhibitory effect on the anodic currents due to its adsorption on the surface of the alloy. Temperature is another parameter with an influence on corrosion processes, so thermodynamic data were obtained from Arrhenius plots and Langmuir adsorption isotherms. The protective action of caffeine is enhanced at high temperatures at OCP, while for potentiodynamic experiments high temperatures block the inhibitory activity of caffeine and the corrosion rate increases. The process may also be studied by a simulation, determining the functional dependence between OCP, corrosion current density (i corr), corrosion potential (E corr), breakdown potential (E bd) and temperature and amount of caffeine in artificial saliva, for Heraenium® CE. The neural network-based methodology applied in this work provides accurate results, thus proving to be an efficient modelling technique.

[1] Benali, O., Larabi, L., Traisnel, M., Gengembre, L., & Harek, Y. (2007). Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1M HClO4. Applied Surface Science, 253, 6130–6139. DOI: 10.1016/j.apsusc.2007.01.075. http://dx.doi.org/10.1016/j.apsusc.2007.01.07510.1016/j.apsusc.2007.01.075Suche in Google Scholar

[2] Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., & García-García, D. M. (2009). Galvanic corrosion of titanium coupled to welded titanium in LiBr solutions at different temperatures. Corrosion Science, 51, 1095–1102. DOI: 10.1016/j.corsci.2009.02.023. http://dx.doi.org/10.1016/j.corsci.2009.02.02310.1016/j.corsci.2009.02.023Suche in Google Scholar

[3] Cosman, N. P., Fatih, K., Roscoe, S. G. (2005). Electrochemical impedance spectroscopy study of the adsorption behaviour of α-lactalbumin and β-casein at stainless steel. Journal of Electroanalytical Chemistry, 574, 261–271. DOI: 10.1016/j.jelechem.2004.08.007. http://dx.doi.org/10.1016/j.jelechem.2004.08.00710.1016/j.jelechem.2004.08.007Suche in Google Scholar

[4] Cottis, R. A., Qing, L., Owen, G., Gartland, S. J., Helliwell, I. A., & Turega, M. (1999). Neural network methods for corrosion data reduction. Materials & Design, 20, 169–178. DOI: 10.1016/s0261-3069(99)00026-6. http://dx.doi.org/10.1016/S0261-3069(99)00026-610.1016/S0261-3069(99)00026-6Suche in Google Scholar

[5] Cuong, N. T., Tai, T. B., Ha, V. T. T., & Nguyen, M. T. (2010). Thermochemical parameters of caffeine, theophylline, and xanthine. Journal of Chemical Thermodynamics, 42, 437–440. DOI: 10.1016/j.jct.2009.10.006. http://dx.doi.org/10.1016/j.jct.2009.10.00610.1016/j.jct.2009.10.006Suche in Google Scholar

[6] da Trindade, L. G., & Gonçalves, R. S. (2009). Evidence of caffeine adsorption on a low-carbon steel surface in ethanol. Corrosion Science, 51, 1578–1583. DOI: 10.1016/j.corsci.2009.03.038. http://dx.doi.org/10.1016/j.corsci.2009.03.03810.1016/j.corsci.2009.03.038Suche in Google Scholar

[7] de Souza, F. S., & Spinelli, A. (2009). Caffeic acid as a green corrosion inhibitor in mild steel. Corrosion Science, 51, 642–649. DOI: 10.1016/j.corsci.2008.12.013. http://dx.doi.org/10.1016/j.corsci.2008.12.01310.1016/j.corsci.2008.12.013Suche in Google Scholar

[8] Fallavena, T., Antonow, M., & Gonçalves, R. S. (2006). Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate. Applied Surface Science, 253, 566–571. DOI: 10.1016/j.apsusc.2005.12.114. http://dx.doi.org/10.1016/j.apsusc.2005.12.11410.1016/j.apsusc.2005.12.114Suche in Google Scholar

[9] Fernandes, F. A. N., & Lona, L. M. F. (2005). Neural network applications in polymerization processes. Brazilian Journal of Chemical Engineering, 22, 401–418. DOI: 10.1590/s0104-66322005000300009. http://dx.doi.org/10.1590/S0104-6632200500030000910.1590/S0104-66322005000300009Suche in Google Scholar

[10] Franceschetti, D. R., & MacDonald, J. R. (1977). Electrode kinetics, equivalent circuits, and system characterization: Small-signal conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 82, 271–301. DOI: 10.1016/s0022-0728(77)80262-3. http://dx.doi.org/10.1016/S0022-0728(77)80262-310.1016/S0022-0728(77)80262-3Suche in Google Scholar

[11] Gece, G. (2011). Drugs: A review of promising novel corrosion inhibitors. Corrosion Science, 53, 3873–3898. DOI: 10.1016/j.corsci.2011.08.006. http://dx.doi.org/10.1016/j.corsci.2011.08.00610.1016/j.corsci.2011.08.006Suche in Google Scholar

[12] Giacomelli, F. C., Giacomelli, C., & Spinelli, A. (2004). Behavior of a Co-Cr-Mo biomaterial in simulated body fluid solutions studied by electrochemical and surface analysis techniques. Journal of Brazilian Chemical Society, 15, 541–547. DOI: 10.1590/s0103-50532004000400016. http://dx.doi.org/10.1590/S0103-5053200400040001610.1590/S0103-50532004000400016Suche in Google Scholar

[13] Gonçalves, R. S., & Mello, L. D. (2001). Electrochemical investigation of ascorbic acid adsorption on low-carbon steel in 0.50 M Na2SO4 solutions. Corrosion Science, 43, 457–470. DOI: 10.1016/s0010-938x(00)00102-5. http://dx.doi.org/10.1016/S0010-938X(00)00102-510.1016/S0010-938X(00)00102-5Suche in Google Scholar

[14] Gonçalves, R. S., Azambuja, D. S., & Lucho, A. M. S. (2002). Electrochemical studies of propargyl alcohol as corrosion inhibitor for nickel, copper, and copper/nickel (55/45) alloy. Corrosion Science, 44, 467–479. DOI: 10.1016/s0010-938x(01)00069-5. http://dx.doi.org/10.1016/S0010-938X(01)00069-510.1016/S0010-938X(01)00069-5Suche in Google Scholar

[15] Grosser, F. N., & Gonçalves, R. S. (2008). Electrochemical evidence of caffeine adsorption on zinc surface in ethanol. Corrosion Science, 50, 2934–2938. DOI: 10.1016/j.corsci.2008.07.010. http://dx.doi.org/10.1016/j.corsci.2008.07.01010.1016/j.corsci.2008.07.010Suche in Google Scholar

[16] Hodgson, A. W. E., Kurz, S., Virtanen, S., Fervel, V., Olsson, C. O. A., & Mischler, S. (2004). Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochimica Acta, 49, 2167–2178. DOI: 10.1016/j.electacta.2003.12.043. http://dx.doi.org/10.1016/j.electacta.2003.12.04310.1016/j.electacta.2003.12.043Suche in Google Scholar

[17] Igual-Muñoz, A., & Mischler, S. (2007). Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. Journal of the Electrochemical Society, 154, C562–C570. DOI: 10.1149/1.2764238. http://dx.doi.org/10.1149/1.276423810.1149/1.2764238Suche in Google Scholar

[18] Igual-Muñoz, A., & Casabán Julián, L. (2010). Influence of electrochemical potential on the tribocorrosion behaviour of high carbon CoCrMo biomedical alloy in simulated body fluids by electrochemical impedance spectroscopy. Electrochimica Acta, 55, 5428–5439. DOI: 10.1016/j.electacta.2010.04.093. http://dx.doi.org/10.1016/j.electacta.2010.04.09310.1016/j.electacta.2010.04.093Suche in Google Scholar

[19] Manaranche, C., & Hornberger, H. (2007). A proposal for the classification of dental alloys according to their resistance to corrosion. Dental Materials, 23, 1428–1437. DOI: 10.1016/j.dental.2006.11.030. http://dx.doi.org/10.1016/j.dental.2006.11.03010.1016/j.dental.2006.11.030Suche in Google Scholar PubMed

[20] Metikoš-Huković, M., & Babić, R. (2009). Some aspects in designing passive alloys with an enhanced corrosion resistance. Corrosion Science, 51, 70–75. DOI: 10.1016/j.corsci.2008.10.004. http://dx.doi.org/10.1016/j.corsci.2008.10.00410.1016/j.corsci.2008.10.004Suche in Google Scholar

[21] Milošev, I., & Strehblow, H. H. (2003). The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochimica Acta, 48, 2767–2774. DOI: 10.1016/s0013-4686(03)00396-7. http://dx.doi.org/10.1016/S0013-4686(03)00396-710.1016/S0013-4686(03)00396-7Suche in Google Scholar

[22] Molina, C., Nogués, L. I., Martinez-Gomis, J., Peraire, M., Salsench, J., Sevilla, P., & Gill, F. J. (2008). Dental casting alloys behaviour during power toothbrushing with toothpastes of various abrasivities. Part II: corrosion and ion release. Journal of Materials Science: Materials in Medicine, 19, 3015–3019. DOI: 10.1007/s10856-008-3432-3. http://dx.doi.org/10.1007/s10856-008-3432-310.1007/s10856-008-3432-3Suche in Google Scholar

[23] Morad, M. S. (2007). Some environmentally friendly formulations as inhibitors for mild steel corrosion in sulfuric acid solution. Journal Applied Electrochemistry, 37, 661–668. DOI: 10.1007/s10800-007-9297-1. http://dx.doi.org/10.1007/s10800-007-9297-110.1007/s10800-007-9297-1Suche in Google Scholar

[24] Ouerd, A., Alemany-Dumont, C., Normand, B., & Szunerits, S. (2008). Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochimica Acta, 53, 4461–4469. DOI: 10.1016/j.electacta.2008.01.025. http://dx.doi.org/10.1016/j.electacta.2008.01.02510.1016/j.electacta.2008.01.025Suche in Google Scholar

[25] Popova, A., Sokolova, E., Raicheva, S., & Christov, M. (2003). AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corrosion Science, 45, 33–58. DOI: 10.1016/s0010-938x(02)00072-0. http://dx.doi.org/10.1016/S0010-938X(02)00072-010.1016/S0010-938X(02)00072-0Suche in Google Scholar

[26] Popova, A. (2007). Temperature effect on mild steel corrosion in acid media in presence of azoles. Corrosion Science, 49, 2144–2158. DOI: 10.1016/j.corsci.2006.10.020. http://dx.doi.org/10.1016/j.corsci.2006.10.02010.1016/j.corsci.2006.10.020Suche in Google Scholar

[27] Saba, P., Brown, W. A., & Omanovic, S. (2006). Interactive behavior of caffeine at a platinum electrode surface. Materials Chemistry and Physiscs, 100, 285–291. DOI: 10.1016/j.matchemphys.2005.12.045. http://dx.doi.org/10.1016/j.matchemphys.2005.12.04510.1016/j.matchemphys.2005.12.045Suche in Google Scholar

[28] Sabino, R., Azambuja, D. S., & Gonçalves, R. S. (2010). Electrochemical behavior of aluminum alloy AA2024 in aqueous solution in the presence of caffeine. Journal of Solid State Electrochemistry, 14, 1255–1260. DOI: 10.1007/s10008-009-0928-9. http://dx.doi.org/10.1007/s10008-009-0928-910.1007/s10008-009-0928-9Suche in Google Scholar

[29] Sharma, M., Ramesh Kumar, A. V., & Singh, N. (2008). Electrochemical corrosion behavior of dental/implant alloys in saline medium. Journal of Materials Science: Materials in Medicine, 19, 2647–2653. DOI: 10.1007/s10856-007-3359-0. 10.1007/s10856-007-3359-0Suche in Google Scholar

[30] Spinelli, A., & Gonçalves, R. S. (1990). Electrochemical studies of the adsorption of propargyl alcohol on low carbon steel electrodes in H2SO4 solutions. Corrosion Science, 30, 1235–1246. DOI: 10.1016/0010-938x(90)90201-f. http://dx.doi.org/10.1016/0010-938X(90)90201-F10.1016/0010-938X(90)90201-FSuche in Google Scholar

[31] Song, Y., Zhu, X., Wang, X., Che, J., & Du, Y. (2001). Anodic oxidation behavior of Al-Ti alloys in acidic media. Journal of Applied Electrochemistry, 31, 1273–1279. DOI: 10.1023/a:1012746926209. http://dx.doi.org/10.1023/A:101274692620910.1023/A:1012746926209Suche in Google Scholar

[32] Szauer, T., & Brandt, A. (1981). Adsorption of oleates of various amines on iron in acidic solution. Electrochimica Acta, 26, 1253–1256. DOI: 10.1016/0013-4686(81)85107-9. http://dx.doi.org/10.1016/0013-4686(81)85107-910.1016/0013-4686(81)85107-9Suche in Google Scholar

[33] Valero Vidal, C., Olmo Juan, A., & Igual Muñoz, A. (2010). Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration. Colloids and Surface B: Biointerfaces, 80, 1–11. DOI: 10.1016/j.colsurfb.2010.05.005. http://dx.doi.org/10.1016/j.colsurfb.2010.05.00510.1016/j.colsurfb.2010.05.005Suche in Google Scholar PubMed

[34] Xu, J., Liu, W. J., & Xu, Z. (2005). Prediction of the property of corrosion resistance of a surface alloyed layer by using artificial neural networks. Surface Review and Letters, 12, 569–572. DOI: 10.1142/s0218625x05007451. http://dx.doi.org/10.1142/S0218625X0500745110.1142/S0218625X05007451Suche in Google Scholar

[35] Živko-Babić, J., Lisjak, D., Ćurković, L., & Jakovac, M. (2008). Estimation of chemical resistance of dental ceramics by neural network. Dental Materials, 24, 18–27. DOI: 10.1016/j.dental.2007.01.008. http://dx.doi.org/10.1016/j.dental.2007.01.00810.1016/j.dental.2007.01.008Suche in Google Scholar PubMed

Published Online: 2014-4-15
Published in Print: 2014-8-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Recent advances in application of liquid-based micro-extraction: A review
  2. Determination of nitrites and nitrates in drinking water using capillary electrophoresis
  3. Comparison of digestion methods for determination of total phosphorus in river sediments
  4. Interdisciplinary study on pottery experimentally impregnated with wine
  5. Improvement in γ-decalactone production by Yarrowia sp. after genome shuffling
  6. Development of an effective extraction process for coenzyme Q10 from Artemia
  7. Effect of anions on the structure and catalytic properties of a La-doped Cu-Mn catalyst in the water-gas shift reaction
  8. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality
  9. Influence of caffeine and temperature on corrosion-resistance of CoCrMo alloy
  10. Cetyltrimethylammonium bromide- and ethylene glycol-assisted preparation of mono-dispersed indium oxide nanoparticles using hydrothermal method
  11. Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
  12. Solvent-free synthesis of β-enamino ketones and esters catalysed by recyclable iron(III) triflate
  13. Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media
  14. Organocatalytic SOMO reactions of copper(I)-acetylide and alkylindium compounds with aldehydes
  15. Molecular modelling and quantitative structure-activity relationship studies of anatoxin-a and epibatidine derivatives with affinity to rodent nAChR receptors
  16. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides
  17. Properties of singlet- and triplet-excited states of hemicyanine dyes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0549-3/pdf?lang=de
Button zum nach oben scrollen