Startseite Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate

  • Anton Gatial EMAIL logo , Marcela Múdra , Ján Moncoľ , Marta Danková , Peter Lönnecke und Martin Breza
Veröffentlicht/Copyright: 12. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the memory of Prof. Ing. Ladislav Valko, DrSc. (1930–2013) A room-temperature synthesis of copper(II) 2-pyridylmethanolate tetrahydrate, [CuL2] · 4H2O, with nearly quantitative yields with its structure redetermined at 213 K is presented. In agreement with the X-ray structure data, the DFT quantum-chemical calculations confirmed the planar structure of CuL2 (C 2h symmetry). The measured IR and Raman spectra were interpreted using the DFT calculations and some erroneous assignments in the previous studies have been corrected.

[1] Antonioli, B., Bray, D. J., Clegg, J. K., Jolliffe, K. A., Gloe, K., Gloe, K., & Lindoy, L. F. (2007). Proton and anion control of framework complexity in copper(II) complex structures derived from 2-(hydroxymethyl)pyridine. Polyhedron, 26, 673–678. DOI: 10.1016/j.poly.2006.08.031. http://dx.doi.org/10.1016/j.poly.2006.08.03110.1016/j.poly.2006.08.031Suche in Google Scholar

[2] Arenas, J. F., Tocón, I. L., Otero, J. C., & Marcos, J. I. (1997). Vibrational spectrum of 2-methylpyridine. Journal of Molecular Structure, 410, 443–446. DOI: 10.1016/s0022-2860(96)09699-8. 10.1016/S0022-2860(96)09699-8Suche in Google Scholar

[3] Bacsa, J., Zhao, H. H., & Dunbar, K. R. (2004). Bis(pyridin-2-ylmethanolato-κ 2N,O)bis(trifluoroacetato)nickel(II). Acta Crystallographica Section E: Structure Reports Online, 60, m1040–m1042. DOI: 10.1107/s160053680401565x. http://dx.doi.org/10.1107/S160053680401565X10.1107/S160053680401565XSuche in Google Scholar

[4] Bauschlicher, C. W., Jr., Langhoff, S. R., Patridge, H., & Barnes, L. A. (1989). Theoretical-studies of the first- and second-row transition-metal methyls and their positiveions. Journal of Chemical Physics, 91, 2399–2411. DOI: 10.1063/1.456998. http://dx.doi.org/10.1063/1.45699810.1063/1.456998Suche in Google Scholar

[5] Bouwman, E., Bolcar, M. A., Libby, E., Huffman, J. C., Folting, K., & Christou, G. (1992). Tetranuclear manganese(III)-oxo carboxylate complexes possessing terminal phenoxide or alkoxide ligands. Inorganic Chemistry, 31, 5185–5192. DOI: 10.1021/ic00051a008. http://dx.doi.org/10.1021/ic00051a00810.1021/ic00051a008Suche in Google Scholar

[6] Brechin, E. K., Knapp, M. J., Huffman, J. C., Hendrickson, D. N., & Christou, G. (2000). New hexanuclear and octanuclear iron(III) oxide clusters: octahedral [Fe6O2]14+ species and core isomerism in [Fe8O4]16+ complexes. Inorganica Chimica Acta, 297, 389–399. DOI: 10.1016/s0020-1693(99)00377-1. http://dx.doi.org/10.1016/S0020-1693(99)00377-110.1016/S0020-1693(99)00377-1Suche in Google Scholar

[7] Carpenter, J. E., & Weinhold, F. (1988). Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. Journal of Molecular Strucure: THEOCHEM, 169, 41–62. http://dx.doi.org/10.1016/0166-1280(88)80248-310.1016/0166-1280(88)80248-3Suche in Google Scholar

[8] Chantry, G. W. (1971). Polarizability theory for the Raman effect. In A. Anderson (Ed.) The Raman effect (Vol. 1, pp. 49–94). New York, NY, USA: Marcel Dekker. Suche in Google Scholar

[9] Cheng, S. C., & Wei, H. H. (2002). Structure, magnetic properties and catecholase activity study of oxo-bridged dinuclear copper(II) complexes. Inorganica Chimica Acta, 340, 105–113. DOI: 10.1016/s0020-1693(02)01059-9. http://dx.doi.org/10.1016/S0020-1693(02)01059-910.1016/S0020-1693(02)01059-9Suche in Google Scholar

[10] Draeger, J. A. (1983). Methylpyridines: Vibrational assignments and an approximate force field. Spectrochimica Acta Part A: Molecular Spectroscopy, 39, 809–825. DOI: 10.1016/0584-8539(83)80022-1. http://dx.doi.org/10.1016/0584-8539(83)80022-110.1016/0584-8539(83)80022-1Suche in Google Scholar

[11] Escuer, A., Font-Bardía, M., Kumar, S. B., Solans, X., & Vicente, R. (1999). Two new nickel(II) cubane compounds derived from pyridine-2-methoxide (Pym): {Ni4(Pym)4Cl4 (CH3OH)4} and {Ni4(Pym)4(N3)4(CH3OH)4}. Crystal structures and magnetic properties. Polyhedron, 18, 909–914. DOI: 10.1016/s0277-5387(98)00378-7. http://dx.doi.org/10.1016/S0277-5387(98)00378-710.1016/S0277-5387(98)00378-7Suche in Google Scholar

[12] Farrugia, L. J. (1997). ORTEP-3 for Windows — a version of ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565–565. DOI: 10.1107/s0021889897003117. http://dx.doi.org/10.1107/S002188989700311710.1107/S0021889897003117Suche in Google Scholar

[13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, W. J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvdor, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Maring, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, revision C1 [computer software]. Pittsburgh, PA, USA: Gaussian. Suche in Google Scholar

[14] Gerber, T. I. A., Luzipo, D. G., & Mayer, P. (2005). The coordination of 2-(hydroxymethyl)pyridine to oxorhenium (V). Synthesis and crystal structure of [ReOCl(C5H4N-CH2O)2]. Journal of Chemical Crystallography, 35, 39–41. DOI: 10.1007/s10870-005-1152-9. http://dx.doi.org/10.1007/s10870-005-1152-910.1007/s10870-005-1152-9Suche in Google Scholar

[15] Hamamci, S., Yilmaz, V. T., & Thöne, C. (2004). Cisdiaquabis[2-(hydroxymethyl)pyridine]nickel(II) dichloride. Acta Crystallographica Section E: Structure Reports Online, 60, m6–m8. DOI: 10.1107/s1600536803026862. http://dx.doi.org/10.1107/S160053680302686210.1107/S1600536803026862Suche in Google Scholar

[16] He, F., & Liu, D. (2005). Bis[2-(hydroxymethyl)pyridine-κ 2N,O]dinitratocopper(II). Acta Crystallographica Section E: Structure Reports Online, 61, m1350–m1351. DOI: 10.1107/s1600536805018696. http://dx.doi.org/10.1107/S160053680501869610.1107/S1600536805018696Suche in Google Scholar

[17] Hoang, N. N., Valach, F., Dunaj-Jurčo, M., & Melník, M. (1992). Structure of bis(salicylato)bis(2-pyridylmethanol) copper(II). Acta Crystallographica Section C: Crystal Structure Communications, 48, 443–445. DOI: 10.1107/s0108270191009897. 10.1107/S0108270191009897Suche in Google Scholar

[18] Ito, M., & Onaka, S. (2004). Versatility of pyridine-2-methanol as a chelating ligand toward a manganese ion: synthesis and X-ray structural analysis on some manganese-pyridine-2-methanol derivatives. Inorganica Chimica Acta, 357, 1039–1046. DOI: 10.1016/j.ica.2003.09.028. http://dx.doi.org/10.1016/j.ica.2003.09.02810.1016/j.ica.2003.09.028Suche in Google Scholar

[19] Janiak, C. (2000). A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society: Dalton Transactions, 2000, 3885–3896. DOI: 10.1039/b003010o. 10.1039/b003010oSuche in Google Scholar

[20] Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345, 91–104. DOI: 10.1007/s11010-010-0563-x. http://dx.doi.org/10.1007/s11010-010-0563-x10.1007/s11010-010-0563-xSuche in Google Scholar PubMed

[21] Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283, 65–87. DOI: 10.1016/j.tox.2011.03.001. http://dx.doi.org/10.1016/j.tox.2011.03.00110.1016/j.tox.2011.03.001Suche in Google Scholar PubMed

[22] Jomova, K., Baros, S., & Valko, M. (2012). Redox active metalinduced oxidative stress in biological systems. Transition Metal Chemistry, 37, 127–134. DOI: 10.1007/s11243-012-9583-6. http://dx.doi.org/10.1007/s11243-012-9583-610.1007/s11243-012-9583-6Suche in Google Scholar

[23] Klots, T. D. (1995). Vibrational spectra of indene. Part 4. Calibration, assignment and ideal-gas thermodynamics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51, 2307–2324. DOI: 10.1016/0584-8539(95)01431-4. http://dx.doi.org/10.1016/0584-8539(95)01431-410.1016/0584-8539(95)01431-4Suche in Google Scholar

[24] Klots, T. D. (1998). Raman vapor spectrum and vibrational assignment for pyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 1481–1498. DOI: 10.1016/s1386-1425(98)00054-7. http://dx.doi.org/10.1016/S1386-1425(98)00054-710.1016/S1386-1425(98)00054-7Suche in Google Scholar

[25] Krishnan, R. B., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 72, 650. DOI: 10.1063/1.438955. 10.1063/1.438955Suche in Google Scholar

[26] Lah, N., Leban, I., & Clérac, R. (2006). The assembly of dinuclear alkoxido-bridged CuII halide complexes of pyridine alcohols to form tetranuclear and polynuclear compounds: Synthesis, structure and magnetic properties. European Journal of Inorganic Chemistry, 2006, 4888–4894. DOI: 10.1002/ejic.200600596. http://dx.doi.org/10.1002/ejic.20060059610.1002/ejic.200600596Suche in Google Scholar

[27] Maroszová, J., Stachová, P., Vasková, Z., Valigura, D., & Koman, M. (2006). (3,5-Dinitrobenzoato-κO)bis[(2-pyridyl)-methanol-κ 2N,O]copper(II) 3,5-dinitrobenzoate. Acta Crystallographica Section E: Structure Reports Online, 62, m109–m110. DOI: 10.1107/s1600536805041310. http://dx.doi.org/10.1107/S160053680504131010.1107/S1600536805041310Suche in Google Scholar

[28] Martos-Calvente, R., de la Peña O’Shea, V. A., Campos-Martin, J. M., Fierro, J. L. G., & Gutiérrez-Puebla, E. (2004). Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A: Chemical, 214, 269–272. DOI: 10.1016/j.molcata.2003.12.023. http://dx.doi.org/10.1016/j.molcata.2003.12.02310.1016/j.molcata.2003.12.023Suche in Google Scholar

[29] McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. Journal of Chemical Physics, 72, 5639. DOI: 10.1063/1.438980. http://dx.doi.org/10.1063/1.43898010.1063/1.438980Suche in Google Scholar

[30] Moncol, J., Kalinakova, B., Svorec, J., Kleinova, M., Koman, M., Hudecova, D., Melník, M., Mazúr, M., & Valko, M. (2004a). Spectral properties and bio-activity of copper(II) clofibriates, part III: Crystal structure of Cu(clofibriate)2(2-pyridylmethanol)2, Cu(clofibriate)2 (4-pyridylmethanol)2 (H2O) dihydrate and Cu2(clofibriate)4(N,N-diethylnicotinamide)2. Inorganica Chimica Acta, 357, 3211–3222. DOI: 10.1016/j.ica.2004.03.043. http://dx.doi.org/10.1016/j.ica.2004.03.04310.1016/j.ica.2004.03.043Suche in Google Scholar

[31] Moncol, J., Mudra, M., Lönnecke, P., Koman, M., & Melník, M. (2004b). Copper(II) halogenopropionates: Lowtemperature crystal and molecular structure of bis(2,2-dichloropropionato)-di(methyl-3-pyridylcarbamate)copper (II) and bis(2-bromopropionato)-di (2-pyridylmethanol)copper(II). Journal of Coordination Chemistry, 57, 1065–1078. DOI: 10.1080/00958970412331281836. http://dx.doi.org/10.1080/0095897041233128183610.1080/00958970412331281836Suche in Google Scholar

[32] Onaka, S., Hong, L., Ito, M., Sunahara, T., Imai, H., & Inoue, K. (2005). Rational synthesis and X-ray structural study of manganese-pyridine-alcohol derivatives. Journal of Coordination Chemistry, 58, 1523–1530. DOI: 10.1080/00958970500078619. http://dx.doi.org/10.1080/0095897050007861910.1080/00958970500078619Suche in Google Scholar

[33] Partal, F., Fernández-Gómez, M., López-González, J. J., Navarro, A., & Kearley, G. J. (2000). Vibrational analysis of the inelastic neutron scattering spectrum of pyridine. Chemical Physics, 261, 239–247. DOI: 10.1016/s0301-0104(00)00233-0. http://dx.doi.org/10.1016/S0301-0104(00)00233-010.1016/S0301-0104(00)00233-0Suche in Google Scholar

[34] Peng, C. Y., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56. DOI: 10.1002/(sici)1096-987x(19960115)17:1〈49::aid-jcc5〉3.3.co;2. http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-010.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0Suche in Google Scholar

[35] Polavarapu, P. L. (1990). Ab initio vibrational Raman and Raman optical activity spectra. The Journal of Physical Chemistry, 94, 8106–8112. DOI: 10.1021/j100384a024. http://dx.doi.org/10.1021/j100384a02410.1021/j100384a024Suche in Google Scholar

[36] Pongor, G., Pulay, P., Fogarasi, G., & Boggs, J. E. (1984). Theoretical prediction of vibrational spectra. 1. The inplane force field and vibrational spectra of pyridine. Journal of the American Chemical Society, 106, 2765–2769. DOI: 10.1021/ja00322a006. http://dx.doi.org/10.1021/ja00322a00610.1021/ja00322a006Suche in Google Scholar

[37] Púčeková-Repická, Z., Moncol, J., Valigura, D., Lis, T., Korabik, M., Melník, M., Mroziński, J., & Mazúr, M. (2007). Synthesis, structure, spectral and magnetic properties of 4-methoxy- and 3-methylsalicylatocopper(II) complexes with 2-pyridylmethanol. Journal of Coordination Chemistry, 60, 2449–2460. DOI: 10.1080/00958970701272565. http://dx.doi.org/10.1080/0095897070127256510.1080/00958970701272565Suche in Google Scholar

[38] Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926. DOI: 10.1021/cr00088a005. http://dx.doi.org/10.1021/cr00088a00510.1021/cr00088a005Suche in Google Scholar

[39] Roeges, N. P. G. (1994). Guide to the complete interpretation of infrared spectra of organic structures. Chichester, UK: Wiley. Suche in Google Scholar

[40] Rochon, F. D., Melanson, R., & Kong, P. C. (1997). Synthesis and crystal structures of oxo pyridinemethanolate technetium(V) complexes. Inorganica Chimica Acta, 254, 303–307. DOI: 10.1016/s0020-1693(96)05176-6. http://dx.doi.org/10.1016/S0020-1693(96)05176-610.1016/S0020-1693(96)05176-6Suche in Google Scholar

[41] Scott, A. P., & Radom, L. (1996). Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory and semiempirical scale factors. The Journal of Physical Chemistry, 100, 16502–16513. DOI: 10.1021/jp960976r. http://dx.doi.org/10.1021/jp960976r10.1021/jp960976rSuche in Google Scholar

[42] Shindo, H., Walter, J. L., & Hooper, R. J. (1965). An infra-red study of bis-(2-pyridylcarbinolo)-chelates. Journal of Inorganic and Nuclear Chemistry, 27, 871–878. DOI: 10.1016/0022-1902(65)80449-3. http://dx.doi.org/10.1016/0022-1902(65)80449-310.1016/0022-1902(65)80449-3Suche in Google Scholar

[43] Suzuki, Y., Tomizawa, H., & Miki, E. (1999). Reaction of hydrous nitrosylruthenium trichloride with 2-pyridinemethanol. Inorganica Chimica Acta, 290, 36–43. DOI: 10.1016/s0020-1693(99)00109-7. http://dx.doi.org/10.1016/S0020-1693(99)00109-710.1016/S0020-1693(99)00109-7Suche in Google Scholar

[44] Tesmer, M., Müller, B., & Vahrenkamp, H. (1997). Oligonuclear zinc complexes of 2-pyridylmethanol. Chemical Communications, 1997, 721–722. DOI: 10.1039/a607985g. http://dx.doi.org/10.1039/a607985g10.1039/a607985gSuche in Google Scholar

[45] Wachters, A. J. H. (1970). Gaussian basis set for molecular wavefunctions containing third-row atoms. The Journal of Chemical Physics, 52, 1033. DOI: 10.1063/1.1673095. http://dx.doi.org/10.1063/1.167309510.1063/1.1673095Suche in Google Scholar

[46] Yang, E. C., Wernsdorfer, W., Hill, S., Edwards, R. S., Nakano, M., Maccagnano, S., Zakharov, L. N., Rheingold, A. L., Christou, G., & Hendrickson, D. N. (2003a). Exchange bias in Ni4 single-molecule magnets. Polyhedron, 22, 1727–1733. DOI: 10.1016/s0277-5387(03)00149-9. http://dx.doi.org/10.1016/S0277-5387(03)00149-910.1016/S0277-5387(03)00149-9Suche in Google Scholar

[47] Yang, E. C., Harden, N., Wernsdorfer, W., Zakharov, L. N., Brechin, E. K., Rheingold, A. L., Christou, G., & Hendrickson, D. N. (2003b). Mn4 single-molecule magnets with a planar diamond core and S = 9. Polyhedron, 22, 1857–1863. DOI: 10.1016/s0277-5387(03)00173-6. http://dx.doi.org/10.1016/S0277-5387(03)00173-610.1016/S0277-5387(03)00173-6Suche in Google Scholar

[48] Yilmaz, V. T., Guney, S., Andac, O., & Harrison, W. T. A. (2002a). Bis(2-pyridylmethanol)bis(saccharinato)zinc(II) and -cadmium(II) at 120 K: Three-dimensional structures containing both N-and O-coordinated ambidentate saccharinate ligands. Acta Crystallographica Section C: Crystal Structure Communications, 58, m427–m430. DOI: 10.1107/s0108270102010491. 10.1107/S0108270102010491Suche in Google Scholar

[49] Yilmaz, V. T., Guney, S., Andac, O., & Harrison, W. T. A. (2002b). Different coordination modes of saccharin in the metal complexes with 2-pyridylmethanol: Synthesis, spectroscopic, thermal and structural characterization. Polyhedron, 21, 2393–2402. DOI: 10.1016/s0277-5387(02)01211-1. http://dx.doi.org/10.1016/S0277-5387(02)01211-110.1016/S0277-5387(02)01211-1Suche in Google Scholar

[50] Yilmaz, V. T., Hamamci, S., & Thöne, C. (2004). Cobalt(II) complexes of 2-methanol-, 2,6-dimethanol- and 2-ethanolpyridines: Syntheses, spectroscopic, thermal and structural characterizations of [Co2(µ-Cl)2(mpy)4]Cl2 · 2H2O, [Co(dmpy)2]Cl2 and [Co(Cl)4](Hpyet)2 (mpy = 2-methanolpyridine; dmpy = 2,6-dimethanolpyridine and Hpyet = 2-ethanolpyridinium). Polyhedron, 23, 841–848. DOI: 10.1016/j.poly.2003.12.007. http://dx.doi.org/10.1016/j.poly.2003.12.00710.1016/j.poly.2003.12.007Suche in Google Scholar

[51] Yoo, J., Yamaguchi, A., Nakano, M., Krzystek, J., Streib, W. E., Brunel, L. C., Ishimoto, H., Christou, G., & Hendrickson, D. N. (2001). Mixed-valence tetranuclear manganese singlemolecule magnets. Inorganic Chemistry, 40, 4604–4616. DOI: 10.1021/ic0012928. http://dx.doi.org/10.1021/ic001292810.1021/ic0012928Suche in Google Scholar PubMed

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Kinetic analysis of cellulose pyrolysis: a short review
  2. Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
  3. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
  4. Thermo-chemical properties of biomass from Posidonia oceanica
  5. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
  6. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
  7. Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
  8. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
  9. Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
  10. Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
  11. Synthesis and characterization of a silylated Brazilian clay mineral surface
  12. Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
  13. Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
  14. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
  15. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
  16. Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0539-5/pdf?lang=de
Button zum nach oben scrollen