Home Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Article
Licensed
Unlicensed Requires Authentication

Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite

  • Zahra Taheri EMAIL logo , Bahram Ghanbari and Hamed Hajibabaei
Published/Copyright: March 12, 2014
Become an author with De Gruyter Brill

Abstract

The main aim of this paper was to study the effect of a new tripodal chelating agent on La1−x SrxCo1−y FeyO3−δ perovskite prepared by the complexation method. For this purpose, a phenolic derivative of glycine (L) was synthesized applying the Mannich reaction and characterized by NMR and IR spectroscopies as well as by elemental analysis. To evaluate the complexation capability of L, its formation constants with the perovskite cations were measured. Comparison of these results with those reported for the complexaion with glycine, introduced L as a good candidate for the complexation with Fe(III) and La(III) cations. Furthermore, the powder XRD observations confirmed an improvement in the perovskite formation in the presence of L.

[1] Andoulsi, R., Horchani-Naifer, K., & Ferid, M. (2014). Effect of the preparation route on the structure and microstructure of LaCoO3. Chemical Papers, 68, 608–613. DOI: 10.2478/s11696-013-0490-x. http://dx.doi.org/10.2478/s11696-013-0490-x10.2478/s11696-013-0490-xSearch in Google Scholar

[2] Berchmans, L. J., Leena, V., Amalajyothi, K., Angappan, S., & Visuvasam, A. (2009). Preparation of lanthanum ferrite substituted with Mg and Ca. Materials and Manufacturing Processes, 24, 546.549. DOI: 10.1080/10426910902746739. http://dx.doi.org/10.1080/1042691090274673910.1080/10426910902746739Search in Google Scholar

[3] Chen, X., Huang, L., Wei, Y., & Wang, H. (2011). Tantalum stabilized SrCoO3−δ perovskite membrane for oxygen separation. Journal of Membrane Science, 368, 159–164. DOI: 10.1016/j.memsci.2010.11.040. http://dx.doi.org/10.1016/j.memsci.2010.11.04010.1016/j.memsci.2010.11.040Search in Google Scholar

[4] Jain, K. C., Keller, J. M., & Kerr, R. D. (2012). U.S. Patent No. 8124037. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

[5] Kremer, C., Torres, J., Domínguez, S., & Mederos, A. (2005). Structure and thermodynamic stability of lanthanide complexes with amino acids and peptides. Coordination Chemistry Reviews, 249, 567–590. DOI: 10.1016/j.ccr.2004.07.004. http://dx.doi.org/10.1016/j.ccr.2004.07.00410.1016/j.ccr.2004.07.004Search in Google Scholar

[6] Liu, G. Z., Zhang, J., & Wang, L. Y. (2011a). A novel molecular cubic perovskite built from charge-assisted hydrogen bond linkages. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 1091–1094. DOI: 10.1080/15533174.2011.591351. http://dx.doi.org/10.1080/15533174.2011.59135110.1080/15533174.2011.591351Search in Google Scholar

[7] Liu, N., Tan, X., Meng, B., & Liu, S. (2011b). Honeycomb-structured perovskite hollow fibre membranes with ultra-thin densified layer for oxygen separation. Separation and Purification Technology, 80, 396–401. DOI: 10.1016/j.seppur.2011.04.014. http://dx.doi.org/10.1016/j.seppur.2011.04.01410.1016/j.seppur.2011.04.014Search in Google Scholar

[8] Liu, M., Ding, D., Blinn, K., Li, X., Nie, L., & Liu, M. (2012). Enhanced performance of LSCF cathode through surface modification. International Journal of Hydrogen Energy, 37, 8613–8620. DOI: 10.1016/j.ijhydene.2012.02.139. http://dx.doi.org/10.1016/j.ijhydene.2012.02.13910.1016/j.ijhydene.2012.02.139Search in Google Scholar

[9] Mani, F., & Sacconi, L. (1983). Reactions involving transition-metal ions and tripodal phosphines and arsines. Comments on Inorganic Chemistry, 2, 157–186. DOI: 10.1080/02603598308078115. http://dx.doi.org/10.1080/0260359830807811510.1080/02603598308078115Search in Google Scholar

[10] Safaei, E., Sheykhi, H., Wojtczak, A., Jagličić, Z., & Kozakiewicz, A. (2011). Synthesis and characterization of an iron(III) complex of glycine derivative of bis(phenol)amine ligand in relevance to catechol dioxygenase active site. Polyhedron, 30, 1219–1224. DOI: 10.1016/j.poly.2011.01.036. http://dx.doi.org/10.1016/j.poly.2011.01.03610.1016/j.poly.2011.01.036Search in Google Scholar

[11] Schrock, R. R. (1997). Transition metal complexes that contain a triamidoamine ligand. Accounts of Chemical Research, 30, 9–16. DOI: 10.1021/ar950195t. http://dx.doi.org/10.1021/ar950195t10.1021/ar950195tSearch in Google Scholar

[12] Scott, R. L. (1956). Some comments on the Benesi.Hildebrand equation. Recueil des Travaux Chimiques des Pays-Bas, 75, 787–789. DOI: 10.1002/recl.19560750711. http://dx.doi.org/10.1002/recl.1956075071110.1002/recl.19560750711Search in Google Scholar

[13] Shao, J., Tao, Y., Wang, J., Xu, C., & Wang, W. G. (2009). Investigation of precursors in the preparation of nanostructured La0.6Sr0.4Co0.2Fe0.8O3−δ via a modified combined complexing method. Journal of Alloys and Compounds, 484, 263–267. DOI: 10.1016/j.jallcom.2009.04.075. http://dx.doi.org/10.1016/j.jallcom.2009.04.07510.1016/j.jallcom.2009.04.075Search in Google Scholar

[14] Suresh, M. B., Yeh, T. H., & Chou, C. C. (2010). Zn doped LSCF as a novel cathode material for solid oxide fuel cell. Integrated Ferroelectrics: An International Journal, 121, 113–119. DOI: 10.1080/10584587.2010.495670. http://dx.doi.org/10.1080/10584587.2010.49567010.1080/10584587.2010.495670Search in Google Scholar

[15] Świerczek, K. (2011). Electrolyte-supported IT-SOFC with LSCF.SCFN composite cathode. Solid State Ionics, 192, 486–490. DOI: 10.1016/j.ssi.2010.12.002. http://dx.doi.org/10.1016/j.ssi.2010.12.00210.1016/j.ssi.2010.12.002Search in Google Scholar

[16] Tan, X., & Li, K. (2009). Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas. AIChE Journal, 55, 2675–2685. DOI: 10.1002/aic.11873. http://dx.doi.org/10.1002/aic.1187310.1002/aic.11873Search in Google Scholar

[17] Tan, X., Thursfield, A., Metcalfe, I. S., & Li, K. (2009). Analysis of a perovskite ceramic hollow fibre membrane reactor for the partial oxidation of methane to syngas. Asia-Pacific Journal of Chemical Engineering, 4, 251–258. DOI: 10.1002/apj.240. http://dx.doi.org/10.1002/apj.24010.1002/apj.240Search in Google Scholar

[18] Tan, X., Liu, N., Meng, B., & Liu, S. (2011). Morphology control of the perovskite hollow fibre membranes for oxygen separation using different bore fluids. Journal of Membrane Science, 378, 308–318. DOI: 10.1016/j.memsci.2011.05.012. http://dx.doi.org/10.1016/j.memsci.2011.05.01210.1016/j.memsci.2011.05.012Search in Google Scholar

[19] Tan, X., Liu, N., Meng, B., Sunarso, J., Zhang, K., & Liu, S. (2012a). Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure. Journal of Membrane Science, 389, 216–222. DOI: 10.1016/j.memsci.2011.10.032. http://dx.doi.org/10.1016/j.memsci.2011.10.03210.1016/j.memsci.2011.10.032Search in Google Scholar

[20] Tan, X., Shi, L., Hao, G., Meng, B., & Liu, S. (2012b). La0.7Sr0.3FeO3−α perovskite hollow fiber membranes for oxygen permeation and methane conversion. Separation and Purification Technology, 96, 89–97. DOI: 10.1016/j.seppur.2012.05.012. http://dx.doi.org/10.1016/j.seppur.2012.05.01210.1016/j.seppur.2012.05.012Search in Google Scholar

[21] Teraoka, Y., Zhang, H.M., Okamoto, K., & Yamazoe, N. (1988). Mixed ionic-electronic conductivity of La1−x SrxCo1−y FeyO3−δ perovskite-type oxides. Materials Research Bulletin, 23, 51–58. DOI: 10.1016/0025-5408(88)90224-3. http://dx.doi.org/10.1016/0025-5408(88)90224-310.1016/0025-5408(88)90224-3Search in Google Scholar

[22] Verkade, J. G. (1993). Atranes: new examples with unexpected properties. Accounts of Chemical Research, 26, 483–489. DOI: 10.1021/ar00033a005. http://dx.doi.org/10.1021/ar00033a00510.1021/ar00033a005Search in Google Scholar

[23] Sin, W. L., Wong, K. H., & Li, P. (2008). Synthesis and magnetic properties of La0.67Sr0.33MnO3 rod-like particles. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 38, 260–263. DOI: 10.1080/15533170802023403. Search in Google Scholar

[24] Wang, S. F., Yeh, C. T., Wang, Y. R., & Hsu, Y. F. (2012). Effects of (LaSr)(CoFeCu)O3−δ cathodes on the characteristics of intermediate temperature solid oxide fuel cells. Journal of Power Sources, 201, 18–25. DOI: 10.1016/j.jpowsour.2011.10.074. http://dx.doi.org/10.1016/j.jpowsour.2011.10.07410.1016/j.jpowsour.2011.10.074Search in Google Scholar

[25] Zawadzki, M., Grabowska, H., & Trawczyński, J. (2010). Effect of synthesis method of LSCF perovskite on its catalytic properties for phenol methylation. Solid State Ionics, 181, 1131–1139. DOI: 10.1016/j.ssi.2010.06.009. http://dx.doi.org/10.1016/j.ssi.2010.06.00910.1016/j.ssi.2010.06.009Search in Google Scholar

[26] Zhai, Y., Xiong, J., Li, C., Xu, X., & Luo, G. (2010). Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane. Journal of Rare Earths, 28, 54–58. DOI: 10.1016/s1002-0721(09)60050-8. http://dx.doi.org/10.1016/S1002-0721(09)60050-810.1016/S1002-0721(09)60050-8Search in Google Scholar

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Kinetic analysis of cellulose pyrolysis: a short review
  2. Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
  3. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
  4. Thermo-chemical properties of biomass from Posidonia oceanica
  5. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
  6. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
  7. Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
  8. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
  9. Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
  10. Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
  11. Synthesis and characterization of a silylated Brazilian clay mineral surface
  12. Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
  13. Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
  14. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
  15. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
  16. Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0535-9/html
Scroll to top button