Startseite Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Alkaline hydrogen peroxide pretreatment of energy crops for biogas production

  • Karina Michalsk EMAIL logo und Stanisław Ledakowicz
Veröffentlicht/Copyright: 12. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the influence of alkaline hydrogen peroxide (H2O2) pretreatment of the three different plant sources: Miscanthus giganteus, Sorghum Moench, and Sida hermaphrodita, for biogas production was investigated. The influence of temperature, reaction time, and H2O2 concentration on the efficiency of biomass degradation and on the further methanogenic fermentation were studied. The results obtained after chemical pretreatment indicate that using H2O2 at alkaline conditions leads to the decomposition of three major structures: lignin, hemicellulose, and cellulose. The best results were achieved for the process performed at 25°C for 24 h with the use of a 5 mass % H2O2 solution. Although the degradation level was very high for all three plant sources, the biogas production from the energy crops pretreated chemically was strongly inhibited by byproducts and the residual oxygen formed after H2O2 decomposition. This fact indicates that alkaline H2O2 pretreatment is a very promising method for plant material degradation for further biogas production, but pretreated biomass must be separated from supernatant before the fermentation process because of the high concentration of inhibitors in the hydrolysates. The best results were obtained for Sida with biogas and methane production of 2.29 Ndm3 and 1.06 Ndm3, respectively.

[1] Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste activated sludge. Progress in Energy and Combustion Science, 34, 755–781. DOI: 10.1016/j.pecs.2008.06.002. http://dx.doi.org/10.1016/j.pecs.2008.06.00210.1016/j.pecs.2008.06.002Suche in Google Scholar

[2] Chen, H., Han, Y., & Xu, J. (2008a). Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, 43, 1462–1466. DOI: 10.1016/j.procbio.2008.07.003. http://dx.doi.org/10.1016/j.procbio.2008.07.00310.1016/j.procbio.2008.07.003Suche in Google Scholar

[3] Chen, Y., Cheng, J. J., & Creamer, K. S. (2008b). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064. DOI: 10.1016/j.biortech.2007.01.057. http://dx.doi.org/10.1016/j.biortech.2007.01.05710.1016/j.biortech.2007.01.057Suche in Google Scholar

[4] Gould, J. M. (1985). Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnology and Bioengineering, 27, 225–231. DOI: 10.1002/bit.260270303. http://dx.doi.org/10.1002/bit.26027030310.1002/bit.260270303Suche in Google Scholar

[5] Heredia-Olea, E., Pérez-Carrillo, E., & Serna-Saldívar, S. O. (2012). Effects of different acid hydrolyses on the conversion of sweet sorghum baggase into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresource Technology, 119, 216–223. DOI: 10.1016/j.biortech.2012.05.122. http://dx.doi.org/10.1016/j.biortech.2012.05.12210.1016/j.biortech.2012.05.122Suche in Google Scholar

[6] Hernandez, J. E., & Edyvean, R. G. J. (2008). Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge. Journal of Hazardous Materials, 160, 20–28. DOI: 10.1016/j.jhazmat.2008.02.075. http://dx.doi.org/10.1016/j.jhazmat.2008.02.07510.1016/j.jhazmat.2008.02.075Suche in Google Scholar

[7] Kim, S. B., Um, B. H., & Park, S. C. (2001). Effect of pretreatment reagent and hydrogen peroxide on enzymatic hydrolysis of oak in percolation process. Applied Biochemistry and Biotechnology, 91–93, 81–94. DOI: 10.1385/abab:91-93:1-9:81. http://dx.doi.org/10.1385/ABAB:91-93:1-9:8110.1385/ABAB:91-93:1-9:81Suche in Google Scholar

[8] Kürschner, K., & Hoffer, A. (1931). Eine neue quantitative Cellulosebestimmung. Chemiker-Zeitung, 17, 161–168. (in German) Suche in Google Scholar

[9] Lee, H. H. B., Park, A. H., & Oloman, C. (2000). Stability of hydrogen peroxide in sodium carbonate solutions. 2000 TAPPI Journal Peer Reviewed Paper, 2000, 1–9. Suche in Google Scholar

[10] Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15, 821–826. DOI: 10.1016/j.rser.2010.07.042. http://dx.doi.org/10.1016/j.rser.2010.07.04210.1016/j.rser.2010.07.042Suche in Google Scholar

[11] Michalska, K., Miazek, K., Krzystek, L., & Ledakowicz, S. (2012). Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology, 119, 72–78. DOI: 10.1016/j.biortech.2012.05.105. http://dx.doi.org/10.1016/j.biortech.2012.05.10510.1016/j.biortech.2012.05.105Suche in Google Scholar PubMed

[12] Michalska, K., & Ledakowicz, S. (2012). Degradacja struktur lignocelulozowych oraz produktów ich hydrolizy (Degradation of lignocellulosic structures and the products of their decomposition). Inżynieria i Aparatura Chemiczna, 51, 157–159. (in Polish) Suche in Google Scholar

[13] Michalska, K., & Ledakowicz, S. (2013). Alkali pre-treatment of Sorghum Moench for biogas production. Chemical Papers, 67, 1130–1137. DOI: 10.2478/s11696-012-0298-0. http://dx.doi.org/10.2478/s11696-012-0298-010.2478/s11696-012-0298-0Suche in Google Scholar

[14] Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686. DOI: 10.1016/j.biortech.2004.06.025. http://dx.doi.org/10.1016/j.biortech.2004.06.02510.1016/j.biortech.2004.06.025Suche in Google Scholar

[15] Rabelo, S. C., Filho, R. M., & Costa, A. C. (2008). A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Applied Biochemistry and Biotechnology, 144, 87–100. DOI: 10.1007/s12010-007-8086-y. http://dx.doi.org/10.1007/s12010-007-8086-y10.1007/s12010-007-8086-ySuche in Google Scholar

[16] Rabelo, S. C., Amezquita Fonseca, N. A., Andrade, R. R., Filho, R. M., & Costa, A. C. (2011). Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass & Bioenergy, 35, 2600–2607. DOI: 10.1016/j.biombioe.2011.02.042. http://dx.doi.org/10.1016/j.biombioe.2011.02.04210.1016/j.biombioe.2011.02.042Suche in Google Scholar

[17] Romero, I., Ruiz, E., Castro, E., & Moya, M. (2010). Acid hydrolysis of olive tree biomass. Chemical Engineering Research and Design, 88, 633–640. DOI: 10.1016/j.cherd.2009.10.007. http://dx.doi.org/10.1016/j.cherd.2009.10.00710.1016/j.cherd.2009.10.007Suche in Google Scholar

[18] Singleton, V. L., & Rossi, J. A., Jr. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. Suche in Google Scholar

[19] Song, Z. L., Yag, G. H., Feng, Y. Z., Ren, G. X., & Han, X. H. (2013). Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. Journal of Integrative Agriculture, 12, 1258–1266. DOI: 10.1016/s2095-3119(13)60355-x. http://dx.doi.org/10.1016/S2095-3119(13)60355-X10.1016/S2095-3119(13)60355-XSuche in Google Scholar

[20] Sørensen, A., Teller, P. J., Hilstrøm, T., & Ahring, B. K. (2008). Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pretreatment and enzymatic treatment. Bioresource Technology, 99, 6602–6607. DOI: 10.1016/j.biortech.2007.09.091. http://dx.doi.org/10.1016/j.biortech.2007.09.09110.1016/j.biortech.2007.09.091Suche in Google Scholar PubMed

[21] Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M. J., & Sárvári Horváth, I. (2010). Pretreatment of paper tube residuals for improved biogas production. Bioresource Technology, 101, 1206–1212. DOI: 10.1016/j.biortech.2009.09.029. http://dx.doi.org/10.1016/j.biortech.2009.09.02910.1016/j.biortech.2009.09.029Suche in Google Scholar PubMed

[22] Wu, L., Arakane, M., Ike, M., Wada, M., Takai, T., Gau, M., & Tokuyasu, K. (2011). Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresource Technology, 102, 4793–4799. DOI: 10.1016/j.biortech.2011.01.023. http://dx.doi.org/10.1016/j.biortech.2011.01.02310.1016/j.biortech.2011.01.023Suche in Google Scholar PubMed

[23] Yamashita, Y., Shono, M., Sasaki, C., & Nakamura, Y. (2010). Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers, 79, 914–920. DOI: 10.1016/j.carbpol.2009.10.017. http://dx.doi.org/10.1016/j.carbpol.2009.10.01710.1016/j.carbpol.2009.10.017Suche in Google Scholar

[24] Yu, J., Zhang, J., He, J., Liu, Z., & Yu, Z. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100, 903–908. DOI: 10.1016/j.biortech.2008.07.025. http://dx.doi.org/10.1016/j.biortech.2008.07.02510.1016/j.biortech.2008.07.025Suche in Google Scholar PubMed

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Kinetic analysis of cellulose pyrolysis: a short review
  2. Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
  3. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
  4. Thermo-chemical properties of biomass from Posidonia oceanica
  5. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
  6. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
  7. Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
  8. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
  9. Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
  10. Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
  11. Synthesis and characterization of a silylated Brazilian clay mineral surface
  12. Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
  13. Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
  14. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
  15. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
  16. Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0531-5/html
Button zum nach oben scrollen