Startseite Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization

  • Wanda Ziemkowska EMAIL logo , Dariusz Basiak , Patrycja Kurtycz , Agnieszka Jastrzębska , Andrzej Olszyna und Antoni Kunicki
Veröffentlicht/Copyright: 12. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nano-titania doped with noble metals (Au/TiO2, Ag/TiO2, Pd/TiO2) has been synthesized by mild hydrolysis of the mixture of metal salts or complexes and titanium isopropoxide ((iPr-O)4Ti). After thermal decomposition of the obtained precursors, nanomaterials were formed. Morphological characterization of the nanomaterials was provided by scanning electron microscopy (SEM) and stereological analysis, determining the BET specific surface area, and BJH nanoporosity (pore volume, pore size). It has been found that the structure of nanomaterials (size of nanoparticles and agglomerates) depended strongly on the method of the (iPr-O)4Ti hydrolysis. A minor dependence on the kind of solvents and precursors of noble metals was observed. The presence of doping metal nanoparticles was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Nanomaterial phases were identified by X-ray diffraction (XRD). According to the XRD patterns, Ag/TiO2 and Pd/TiO2 products with doping metals in their oxidized form contain Ag-Ti and Pd-Ti phases. Peaks of the metal oxides Ag2O and PdO are absent in the XRD patterns. The average size of TiO2 nanoparticles is situated in the region of 20–60 nm, whereas metals are present as about 10–15 nm sized particles and fine nanoparticles.

[1] Andrieux, J., Dezellus, O., Bosselet, F., Sacerdote-Peronnet, M., Sigala, C., Chiriac, R., & Viala J. C. (2008). Details on the formation of Ti2Cu3 in the Ag-Cu-Ti system in the temperature range 790 to 860 °C. Journal of Phase Equilibria and Diffusion, 29, 156–162. DOI: 10.1007/s11669-008-9247-6. http://dx.doi.org/10.1007/s11669-008-9247-610.1007/s11669-008-9247-6Suche in Google Scholar

[2] Chao, H. E., Yun, Y. U., Xingfang, H. U., & Larbot, A. (2003). Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. Journal of the European Ceramic Society, 23, 1457–1464. DOI: 10.1016/s0955-2219(02)00356-4. http://dx.doi.org/10.1016/S0955-2219(02)00356-410.1016/S0955-2219(02)00356-4Suche in Google Scholar

[3] Chen, H. D., Weiss, J. C., & Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technology, 60(3), 30–37. Suche in Google Scholar

[4] Choi, W. Y., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 98, 13669–13679. DOI: 10.1021/j100102a038. http://dx.doi.org/10.1021/j100102a03810.1021/j100102a038Suche in Google Scholar

[5] Ellner, M. (2004). Partial atomic volume and partial molar enthalpy of formation of the 3d metals in the palladium-based solid solutions. Metallurgical and Materials Transactions A, 35, 63–70. DOI: 10.1007/s11661-004-0109-5. http://dx.doi.org/10.1007/s11661-004-0109-510.1007/s11661-004-0109-5Suche in Google Scholar

[6] European Directorate for the Quality of Medicines & Health-Care (2005). European pharmacopoeia (5th ed., Vol. 2, pp. 2587–2588). Strasbourg, France. Suche in Google Scholar

[7] Evans, J., Harris, I. R., & Guzei, L. S. (1979). An investigation of some palladium-titanium and some palladium-titaniumhydrogen alloys. Journal of the Less-Common Metals, 64, P39–P57. DOI: 10.1016/0022-5088(79)90186-3. http://dx.doi.org/10.1016/0022-5088(79)90186-310.1016/0022-5088(79)90186-3Suche in Google Scholar

[8] Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research: Part A, 52, 662–668. DOI: 10.1002/1097-4636(20001215)52:4〈662::AIDJBM10〉3.0.CO;2-3. http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-310.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3Suche in Google Scholar

[9] Hu, C., Yu, J. C., Hao, Z. P., & Wong, P. K. (2003). Photocatalytic degradation of triazine-containing azodyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 42, 47–55. DOI: 10.1016/s0926-3373(02)00214-x. http://dx.doi.org/10.1016/S0926-3373(02)00214-X10.1016/S0926-3373(02)00214-XSuche in Google Scholar

[10] Horikoshi, S., Watanabe, N., Hidaka, H., & Serpone, N. (2002). Photocurrent enhancement from an active hybrid TiO2 film electrode fabricated by a sol-gel method: photocurrent generation during the photooxidation of 4-nonylphenol and 4-nonylphenol polyethoxylate on TiO2/OTE electrodes. New Journal of Chemistry, 26, 1161–1166. DOI: 10.1039/b202379m. http://dx.doi.org/10.1039/b202379m10.1039/B202379MSuche in Google Scholar

[11] Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H. Z., Tam, P. K. H., Chiu, J. F., & Che, C. M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5, 916–924. DOI: 10.1021/pr0504079. http://dx.doi.org/10.1021/pr050407910.1021/pr0504079Suche in Google Scholar

[12] Liu, D., & Kamat, P. V. (1993). Electrochemical rectification in CdSe+TiO2 coupled semiconductor films. Journal of Electroanalytical Chemistry, 347, 451–456. DOI: 10.1016/0022-0728(93)80110-4. http://dx.doi.org/10.1016/0022-0728(93)80110-410.1016/0022-0728(93)80110-4Suche in Google Scholar

[13] Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., & Warheit, D. B. (2006). Safe handling of nanotechnology. Nature, 444, 267–269. DOI: 10.1038/444267a. http://dx.doi.org/10.1038/444267a10.1038/444267aSuche in Google Scholar PubMed

[14] Monteiro-Riviere, N. A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A. O., & Riviere, N. A. (2011). Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study. Toxicological Sciences, 123, 264–280. DOI: 10.1093/toxsci/kfr148. http://dx.doi.org/10.1093/toxsci/kfr14810.1093/toxsci/kfr148Suche in Google Scholar PubMed

[15] Nam, H. J., Itoh, K., & Murabayashi, M. (2002). Photocatalytic activity of TiO2 thin film — Effect of substrate. Electrochemistry, 70, 429–431. 10.5796/electrochemistry.70.429Suche in Google Scholar

[16] Peter, A., Nicula, C., Mihaly-Cozmuta, A., Mihaly-Cozmuta, L., & Indrea, E. (2012). Chemical and sensory changes of different dairy products during storage in packages containing nanocrystallised TiO2. International Journal of Food Science & Technology, 47, 1448–1456. DOI: 10.1111/j.1365-2621.2012.02992.x. 10.1111/j.1365-2621.2012.02992.xSuche in Google Scholar

[17] Pichot, F., Pitts, J. R., & Greg, B. A. (2000). Low temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells. Langmuir, 16, 5626–5630. DOI: 10.1021/la000095i. http://dx.doi.org/10.1021/la000095i10.1021/la000095iSuche in Google Scholar

[18] Schmutzer, G., Feher, I., Marincas, O., Avram, V., Kovacs, M. H., David, L., Danciu, V., & Moldovan, Z. (2012). Photodegradation study of some indoor air pollutants in the presence of UV-VIS irradion and TiO2 photocatalyst. Studia Universitatis Babes-Bolyai Chemia, 57(3), 15–21. Suche in Google Scholar

[19] Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182. DOI: 10.1016/j.jcis.2004.02.012. http://dx.doi.org/10.1016/j.jcis.2004.02.01210.1016/j.jcis.2004.02.012Suche in Google Scholar PubMed

[20] The Commission of the European Communities (1995). Commission Directive 95/45/EC of 26 July 1995 laying down specific purity criteria concerning colours for use in foodstuffs. Official Journal of European Communities, L226, 1–45. Suche in Google Scholar

[21] United States Food and Drug Administration (1986). Titanium dioxide. Code of Federal Regulations (Title 21, Section 73.3126). Suche in Google Scholar

[22] Yu, J. C., Ho, W. K., Yu, J. G., Yip, H. Y., Wong, P. K., & Zhao, J. C. (2005). Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology, 39, 1175–1179. DOI: 10.1021/es035374h. http://dx.doi.org/10.1021/es035374h10.1021/es035374hSuche in Google Scholar PubMed

[23] Veréb, G., Ambrus, Z., Pap, Zs., Kmetykó, A., Dombi, A., Danciu, V., Cheesman, A., & Mogyorósi, K. (2012). Comparative study on UV and visible light sensitive bare and doped titanium dioxide photocatalyst for decomposition of environmental pollutants in water. Applied Catalysis A: General, 417-418, 26–36. DOI: 10.1016/j.apcata.2011.12.018. http://dx.doi.org/10.1016/j.apcata.2011.12.01810.1016/j.apcata.2011.12.018Suche in Google Scholar

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Kinetic analysis of cellulose pyrolysis: a short review
  2. Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
  3. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
  4. Thermo-chemical properties of biomass from Posidonia oceanica
  5. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
  6. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
  7. Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
  8. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
  9. Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
  10. Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
  11. Synthesis and characterization of a silylated Brazilian clay mineral surface
  12. Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
  13. Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
  14. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
  15. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
  16. Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0537-7/pdf?lang=de
Button zum nach oben scrollen