Startseite Kinetic analysis of cellulose pyrolysis: a short review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetic analysis of cellulose pyrolysis: a short review

  • Cristina Şerbănescu EMAIL logo
Veröffentlicht/Copyright: 12. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Since the 1950s, cellulose pyrolysis has been the subject of intense study, with kinetic analyses forming a major part of these studies. They represent useful tools for a better understanding of the physicochemical process and for the proper design of industrial pyrolysis units. Until recently, the methods most frequently used in these analyses were based on model-fitting, i.e. the fitting of the experimental data to a number of mathematical models. Nowadays, other methods, so-called “model-free” methods, are considered to be more suited. These are based on the principle that, at constant conversion, the reaction rate depends only on temperature. In its first part, this short review presents the particularities and drawbacks of the traditional model-fitting models. Subsequently, several main contributions in this field are listed and discussed. Finally, the more suited “model-free” (isoconversional) methods are explained and several main studies presented, as well as a comparison of this method with the model-fitting ones.

[1] Aboulkas, A., & El Harfi, K. (2008). Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale, 25, 426–443. DOI: 10.3176/oil.2008.4.04. http://dx.doi.org/10.3176/oil.2008.4.0410.3176/oil.2008.4.04Suche in Google Scholar

[2] Alves, S. S., & Figueiredo, J. L. (1989). Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions. Journal of Analytical and Applied Pyrolysis, 17, 37–46. DOI: 10.1016/0165-2370(89)85004-1. http://dx.doi.org/10.1016/0165-2370(89)85004-110.1016/0165-2370(89)85004-1Suche in Google Scholar

[3] AGEE-Stat (2011). Renewable energy sources 2010. Bonn, Germany: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. Suche in Google Scholar

[4] Agrawal, R. K. (1988). Kinetics of reactions involved in pyrolysis of cellulose. II. The modified Kilzer-Broido model. The Canadian Journal of Chemical Engineering, 66, 413–418. DOI: 10.1002/cjce.5450660310 10.1002/cjce.5450660310Suche in Google Scholar

[5] Banyasz, J. L., Li, S., Lyons-Hart, J. L., & Shafer, K. H. (2001). Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution. Journal of Analytical and Applied Pyrolysis, 57, 223–248. DOI: 10.1016/s0165-2370(00)00135-2. http://dx.doi.org/10.1016/S0165-2370(00)00135-210.1016/S0165-2370(00)00135-2Suche in Google Scholar

[6] Barud, H. S., Ribeiro, C. A., Capela, J. M. V., Crespi, M. S., Ribeiro, S. J. L., & Messadeq, Y. (2011). Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 105, 421–426. DOI: 10.1007/s10973-010-1118-9. http://dx.doi.org/10.1007/s10973-010-1118-910.1007/s10973-010-1118-9Suche in Google Scholar

[7] Blažek, J. (2005). Study of the reaction kinetics of the thermal degradation of polymer. Ph. D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France. Suche in Google Scholar

[8] Broido, A., Javier-Son, A. C., Ouano, A. C., Barrell, E. M., II (1973). Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. Journal of Applied Polymer Science, 17, 3627–3635. DOI: 10.1002/app.1973.070171207. http://dx.doi.org/10.1002/app.1973.07017120710.1002/app.1973.070171207Suche in Google Scholar

[9] Broido, A., & Nelson, M. A. (1975). Char yield on pyrolysis of cellulose. Combustion and Flame, 24, 263–268. DOI: 10.1016/0010-2180(75)90156-x. http://dx.doi.org/10.1016/0010-2180(75)90156-X10.1016/0010-2180(75)90156-XSuche in Google Scholar

[10] Broido, A. (1976). Kinetics of solid-phase cellulose pyrolysis. In F. Shafizadeh, K. V. Sarkanen, & D. A. Tillman (Eds.), Thermal uses and properties of carbohydrates and lignins (pp. 19–36). New York, NY, USA: Academic Press. DOI: 10.1016/b978-0-12-637750-7.50006-6. http://dx.doi.org/10.1016/B978-0-12-637750-7.50006-610.1016/B978-0-12-637750-7.50006-6Suche in Google Scholar

[11] Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., & Mitsuhashi, T. (2000). Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta, 355, 125–143. DOI: 10.1016/s0040-6031(00)00443-3. http://dx.doi.org/10.1016/S0040-6031(00)00443-310.1016/S0040-6031(00)00443-3Suche in Google Scholar

[12] Budrugeac, P., & Segal, E. (2003). Prediction of the isothermal behavior of solid-gas systems from non-isothermal data. Journal of Thermal Analysis and Calorimetry, 72, 831–837. DOI: 10.1023/a:1025014114527. http://dx.doi.org/10.1023/A:102501411452710.1023/A:1025014114527Suche in Google Scholar

[13] Cabrales, L., & Abidi, N. (2010). On the thermal degradation of cellulose in cotton fibers. Journal of Thermal Analysis and Calorimetry, 102, 485–491. DOI: 10.1007/s10973-010-0911-9. http://dx.doi.org/10.1007/s10973-010-0911-910.1007/s10973-010-0911-9Suche in Google Scholar

[14] Capart, R., Khezami, L., & Burnham, A. K. (2004). Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta, 417, 79–89. DOI: 10.1016/j.tca.2004.01.029. http://dx.doi.org/10.1016/j.tca.2004.01.02910.1016/j.tca.2004.01.029Suche in Google Scholar

[15] Chen, W. H., & Kuo, P. C. (2011). Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy, 36, 6451–6460. DOI: 10.1016/j.energy.2011.09.022. http://dx.doi.org/10.1016/j.energy.2011.09.02210.1016/j.energy.2011.09.022Suche in Google Scholar

[16] Conesa, J. A., Caballero, J. A., Marcilla, A., & Font, R. (1995). Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta, 254, 175–192. DOI: 10.1016/0040-6031(94)02102-t. http://dx.doi.org/10.1016/0040-6031(94)02102-T10.1016/0040-6031(94)02102-TSuche in Google Scholar

[17] Di Blasi, C. (1993). Modeling and simulation of combustion processes of charring and non-charring solid fuels. Progress in Energy and Combustion Science, 19, 71–104. DOI: 10.1016/0360-1285(93)90022-7. http://dx.doi.org/10.1016/0360-1285(93)90022-710.1016/0360-1285(93)90022-7Suche in Google Scholar

[18] Di Blasi, C. (1996). Heat transfer mechanisms and multistep kinetics in the ablative pyrolysis of cellulose. Chemical Engineering Science, 51, 2211–2220. DOI: 10.1016/0009-2509(96)00078-4. http://dx.doi.org/10.1016/0009-2509(96)00078-410.1016/0009-2509(96)00078-4Suche in Google Scholar

[19] Di Blasi, C. (1998). Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. Journal of Analytical and Applied Pyrolysis, 47, 43–64. DOI: 10.1016/s0165-2370(98)00079-5. http://dx.doi.org/10.1016/S0165-2370(98)00079-510.1016/S0165-2370(98)00079-5Suche in Google Scholar

[20] Dickinson, C. F., & Heal, G. R. (2009a). A review of the ICTAC Kinetics Project, 2000. Part 1. Isothermal results. Thermochimica Acta, 494, 1–14. DOI: 10.1016/j.tca.2009.05.003. http://dx.doi.org/10.1016/j.tca.2009.05.00310.1016/j.tca.2009.05.003Suche in Google Scholar

[21] Dickinson, C. F., & Heal, G. R. (2009b). A review of the ICTAC kinetics project, 2000. Part 2. Non-isothermal results. Thermochimica Acta, 494, 15–25. DOI: 10.1016/j.tca.2009.05.009. http://dx.doi.org/10.1016/j.tca.2009.05.00910.1016/j.tca.2009.05.009Suche in Google Scholar

[22] Diebold, J. P. (1994). A unified, global model for the pyrolysis of cellulose. Biomass and Bioenergy, 7, 75–85. DOI: 10.1016/0961-9534(94)00039-v. http://dx.doi.org/10.1016/0961-9534(94)00039-V10.1016/0961-9534(94)00039-VSuche in Google Scholar

[23] Evans, R. J., & Milne, T. A. (1987). Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energy & Fuels, 1, 123–137. DOI: 10.1021/ef00002a001. http://dx.doi.org/10.1021/ef00002a00110.1021/ef00002a001Suche in Google Scholar

[24] Fisher, T., Hajaligol, M., Waymack, B., & Kellogg, D. (2002). Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis, 62, 331–349. DOI: 10.1016/s0165-2370(01)00129-2. http://dx.doi.org/10.1016/S0165-2370(01)00129-210.1016/S0165-2370(01)00129-2Suche in Google Scholar

[25] Font, R., & García, A. N. (1995). Application of the transition state theory to the pyrolysis of biomass and tars. Journal of Analytical and Applied Pyrolysis, 35, 249–258. DOI: 10.1016/0165-2370(95)00916-8. http://dx.doi.org/10.1016/0165-2370(95)00916-810.1016/0165-2370(95)00916-8Suche in Google Scholar

[26] Galwey, A. K. (2004). Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochimica Acta, 413, 139–183. DOI: 10.1016/j.tca.2003.10.013. http://dx.doi.org/10.1016/j.tca.2003.10.01310.1016/j.tca.2003.10.013Suche in Google Scholar

[27] Garcia-Perez, M. (2008). The formation of polyaromatic hydrocarbons and dioxins during pyrolysis: A review of the literature with descriptions of biomass composition, fast pyrolysis technologies and thermochemical reactions. Pullman, WA, USA: Washington State University. (WSUEEP08-010) Suche in Google Scholar

[28] Gavillon, R. (2007). Préparation et caractérisation des matériaux cellulosiques ultra poreux. Ph. D. thesis, école des Mines de Paris, Paris, France. (in French) Suche in Google Scholar

[29] Grønli, M., Antal, M. J., Jr., & Várhegyi, G. (1999). A roundrobin study of cellulose pyrolysis kinetics by thermogravimetry. Industrial & Engineering Chemistry Research, 38, 2238–2244. DOI: 10.1021/ie980601n. http://dx.doi.org/10.1021/ie980601n10.1021/ie980601nSuche in Google Scholar

[30] Hopkins, M. W., DeJenga, C., & Antal, M. J., Jr. (1984). The flash pyrolysis of cellulosic materials using concentrated visible light. Solar Energy, 32, 547–551. DOI: 10.1016/0038-092x(84)90269-x. http://dx.doi.org/10.1016/0038-092X(84)90269-X10.1016/0038-092X(84)90269-XSuche in Google Scholar

[31] Hu, S., Jess, A., & Xu, M. H. (2007). Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models. Fuel, 86, 2778–2788. DOI: 10.1016/j.fuel.2007.02.031. http://dx.doi.org/10.1016/j.fuel.2007.02.03110.1016/j.fuel.2007.02.031Suche in Google Scholar

[32] Huang, Y. F., Kuan, W. H., Chiueh, P. T., & Lo, S. L. (2011). A sequential method to analyze the kinetics of biomass pyrolysis. Bioresource Technology, 102, 9241–9246. DOI: 10.1016/j.biortech.2011.07.015. http://dx.doi.org/10.1016/j.biortech.2011.07.01510.1016/j.biortech.2011.07.015Suche in Google Scholar PubMed

[33] Kim, S. D., & Eom, Y. J. (2006). Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results. Korean Journal of Chemical Engineering, 23 (3), 409–414. DOI: 10.1007/bf02706742. http://dx.doi.org/10.1007/BF0270674210.1007/BF02706742Suche in Google Scholar

[34] Kilzer, F. J., & Broido, A. (1965). Speculations on the nature of cellulose pyrolysis. Pyrodynamics, 2, 151–163. Suche in Google Scholar

[35] Lédé, J. (2012). Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose. Journal of Analytical and Applied Pyrolysis, 94, 17–32. DOI: 10.1016/j.jaap.2011.12.019. http://dx.doi.org/10.1016/j.jaap.2011.12.01910.1016/j.jaap.2011.12.019Suche in Google Scholar

[36] Lewellen, P. C., Peters, W. A., & Howard, J. B. (1977). Cellulose pyrolysis kinetics and char formation mechanism. Symposium (International) on Combustion, 16, 1471–1480. DOI: 10.1016/s0082-0784(77)80429-3. http://dx.doi.org/10.1016/S0082-0784(77)80429-310.1016/S0082-0784(77)80429-3Suche in Google Scholar

[37] Li, C. R., & Tang, T. B. (1997). Dynamic thermal analysis of solid-state reactions. The ultimate method for data analysis? Journal of Thermal Analysis, 49, 1243–1248. DOI: 10.1007/bf01983680. http://dx.doi.org/10.1007/BF0198368010.1007/BF01983680Suche in Google Scholar

[38] Li, C. R., & Tang, T. B. (1999). Isoconversional method for kinetic analysis of solid-state reactions from dynamics thermoanalytical data. Journal of Materials Science, 34, 3467–3470. DOI: 10.1023/a:1004605820783. http://dx.doi.org/10.1023/A:100460582078310.1023/A:1004605820783Suche in Google Scholar

[39] Liao, Y. F., Wang, S. R., & Ma, X. Q. (2004). Study of reaction mechanisms in cellulose pyrolysis. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 49, 407–411. Suche in Google Scholar

[40] Liu, Q., Wang, S. R., Wang, K. G., Guo, X. J., Luo, Z. Y., & Cen, K. F. (2008). Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis. Acta Physico-Chimica Sinica, 24, 1957–1963. DOI: 10.1016/s1872-1508 (08)60078-9. http://dx.doi.org/10.1016/S1872-1508(08)60078-910.1016/S1872-1508(08)60078-9Suche in Google Scholar

[41] Mamleev, V., Bourbigot, S., & Yvon, J. (2007). Kinetic analysis of the thermal decomposition of cellulose: The change of the rate limitation. Journal of Analytical and Applied Pyrolysis, 80, 141–150. DOI: 10.1016/j.jaap.2007.01.012. http://dx.doi.org/10.1016/j.jaap.2007.01.01210.1016/j.jaap.2007.01.012Suche in Google Scholar

[42] Mamleev, V., Bourbigot, S., Le Bras, M., & Yvon, J. (2009). The facts and hypotheses relating to phenomenological model of cellulose pyrolysis: Interdependence of the steps. Journal of Analytical and Applied Pyrolysis, 84, 1–17. DOI: 10.1016/j.jaap.2008.10.014. http://dx.doi.org/10.1016/j.jaap.2008.10.01410.1016/j.jaap.2008.10.014Suche in Google Scholar

[43] Marra, F. (2009). Numerical analysis for kinetics and yield of wood biomass pyrolysis. In N. Mastorakis, & J. Sakellaris (Eds.), Advances in numerical methods (chapter 11, pp. 127–136). Heidelberg, Germany: Springer. DOI: 10.1007/978-0-387-76483-211. http://dx.doi.org/10.1007/978-0-387-76483-2_11Suche in Google Scholar

[44] Miller, R. S., & Bellan, J. (1997). A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 126, 97–137. DOI: 10.1080/00102209708935670. http://dx.doi.org/10.1080/0010220970893567010.1080/00102209708935670Suche in Google Scholar

[45] Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., & Sommariva, S. (2008). Chemical kinetics of biomass pyrolysis. Energy & Fuels, 22, 4292–4300. DOI: 10.1021/ef800551t. http://dx.doi.org/10.1021/ef800551t10.1021/ef800551tSuche in Google Scholar

[46] Reed, T. B., & Cowdery, C. D. (1987). Heat flux requirements for fast pyrolysis and a new method for generating biomass vapor. In 193rd National Meeting of the American Chemical Society, April 5–10, 1987. Denver, CO, USA: American Chemical Society Division of Petroleum Chemistry. Suche in Google Scholar

[47] Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., Pascual-Cosp, J., Benítez-Guerrero, M., & Criado, J. M. (2011). An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose, 18, 1487–1498. DOI: 10.1007/s10570-011-9602-3. http://dx.doi.org/10.1007/s10570-011-9602-310.1007/s10570-011-9602-3Suche in Google Scholar

[48] Sbirrazzuoli, N., Vincent, L., Mija, A., & Guigo, N. (2009). Integral, differential and advanced isoconversional methods. Complex mechanisms and isothermal predicted conversiontime curves. Chemometrics and Intelligent Laboratory Systems, 96, 219–226. DOI: 10.1016/j.chemolab.2009.02.002. http://dx.doi.org/10.1016/j.chemolab.2009.02.00210.1016/j.chemolab.2009.02.002Suche in Google Scholar

[49] Scott, D. S., Piskorz, J., & Radlein, D. (1989). Thermal conversion of biomass to liquids by the Waterloo fast pyrolysis process. In E. Mattucci, G. Grassi, & W. Palz (Eds.), Proceedings of Pyrolysis as a Basic Technology for Large Agro-Energy Projects, October 15–16, 1987 (pp. 115–124). Brussels, Belgium: Office for Official Publications of the European Communities. Suche in Google Scholar

[50] Sewry, J. D., & Brown, M. E. (2002). “Model-free” kinetic analysis? Thermochimica Acta, 390, 217–225. DOI: 10.1016/s0040-6031(02)00083-7. http://dx.doi.org/10.1016/S0040-6031(02)00083-710.1016/S0040-6031(02)00083-7Suche in Google Scholar

[51] Shafizadeh, F. (1968). Pyrolysis and combustion of cellulosic materials. Advances in Carbohydrate Chemistry, 23, 419–474. DOI: 10.1016/s0096-5332(08)60173-3. 10.1016/S0096-5332(08)60173-3Suche in Google Scholar

[52] Shafizadeh, F., & Bradbury, A. G. W. (1979). Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science, 23, 1431–1442. DOI: 10.1002/app.1979.070230513. http://dx.doi.org/10.1002/app.1979.07023051310.1002/app.1979.070230513Suche in Google Scholar

[53] Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 3, 283–305. DOI: 10.1016/0165-2370(82)80017-x. http://dx.doi.org/10.1016/0165-2370(82)80017-X10.1016/0165-2370(82)80017-XSuche in Google Scholar

[54] Šimon, P. (2005). Considerations on the single-step kinetics approximation. Journal of Thermal Analysis and Calorimetry, 82, 651–657. DOI: 10.1007/s10973-005-0945-6. http://dx.doi.org/10.1007/s10973-005-0945-610.1007/s10973-005-0945-6Suche in Google Scholar

[55] Sonobe, T., & Worasuwannarak, N. (2008). Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel, 87, 414–421. DOI: 10.1016/j.fuel.2007.05.004. http://dx.doi.org/10.1016/j.fuel.2007.05.00410.1016/j.fuel.2007.05.004Suche in Google Scholar

[56] Stamm, A. J. (1956). Thermal degradation of wood and cellulose. Industrial & Engineering Chemistry, 48, 413–417. DOI: 10.1021/ie51398a022. http://dx.doi.org/10.1021/ie51398a02210.1021/ie51398a022Suche in Google Scholar

[57] Tihay, V., Boulnois, C., & Gillard, P. (2011). Influence of oxygen concentration on the kinetics of cellulose wadding degradation. Thermochimica Acta, 525, 16–24. DOI: 10.1016/j.tca.2011.07.016. http://dx.doi.org/10.1016/j.tca.2011.07.01610.1016/j.tca.2011.07.016Suche in Google Scholar

[58] Várhegyi, G., Antal, M. J., Jr., Szekely, T., & Szabó, P. (1989). Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy & Fuels, 3, 329–335. DOI: 10.1021/ef00015a012. http://dx.doi.org/10.1021/ef00015a01210.1021/ef00015a012Suche in Google Scholar

[59] Várhegyi, G., Jakab, E., & Antal, M. J., Jr. (1994). Is the Broido-Shafizadeh model for cellulose pyrolysis true? Energy & Fuel, 8, 1345–1352. DOI: 10.1021/ef00048a025. http://dx.doi.org/10.1021/ef00048a02510.1021/ef00048a025Suche in Google Scholar

[60] Várhegyi, G., Antal, M. J., Jr., Jakab, E., & Szabó, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42, 73–87. DOI: 10.1016/s0165-2370(96)00971-0. http://dx.doi.org/10.1016/S0165-2370(96)00971-010.1016/S0165-2370(96)00971-0Suche in Google Scholar

[61] Völker, S., & Rieckmann, Th. (2002). Thermogravimetric investigation of cellulose pyrolysis — impact of initial and final mass on kinetic results. Journal of Analytical and Applied Pyrolysis, 62, 165–177. DOI: 10.1016/s0165-2370(01)00113-9. http://dx.doi.org/10.1016/S0165-2370(01)00113-910.1016/S0165-2370(01)00113-9Suche in Google Scholar

[62] Vyazovkin, S. (1996). A unified approach to kinetic processing of nonisothermal data. International Journal of Chemical Kinetics, 28(2), 95–101. DOI: 10.1002/(SICI)1097-4601(1996)28:2〈95::AID-KIN4〉3.0.CO;2-G. http://dx.doi.org/10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-GSuche in Google Scholar

[63] Vyazovkin, S., & Dollimore, D. (1996). Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. Journal of Chemical Information and Modeling, 36, 42–45. DOI: 10.1021/ci950062m. http://dx.doi.org/10.1021/ci950062m10.1021/ci950062mSuche in Google Scholar

[64] Vyazovkin, S., & Wight, C. A. (1997). Kinetics in solids. Annual Review of Physical Chemistry, 48, 125–149. DOI: 10.1146/annurev.physchem.48.1.125. http://dx.doi.org/10.1146/annurev.physchem.48.1.12510.1146/annurev.physchem.48.1.125Suche in Google Scholar

[65] White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural case studies. Journal of Analytical and Applied Pyrolysis, 91, 1–33. DOI: 10.1016/j.jaap.2011.01.004. http://dx.doi.org/10.1016/j.jaap.2011.01.00410.1016/j.jaap.2011.01.004Suche in Google Scholar

[66] Zhu, G. Y., Zhu, X., Xiao, Z. B., & Yi, F. P. (2012). Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer. Journal of Analytical and Applied Pyrolysis, 94, 126–130. DOI: 10.1016/j.jaap.2011.11.016. http://dx.doi.org/10.1016/j.jaap.2011.11.01610.1016/j.jaap.2011.11.016Suche in Google Scholar

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Kinetic analysis of cellulose pyrolysis: a short review
  2. Simultaneous determination of ciprofloxacin hydrochloride and hydrocortisone in ear drops by high performance liquid chromatography
  3. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy
  4. Thermo-chemical properties of biomass from Posidonia oceanica
  5. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems
  6. Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller
  7. Alkaline hydrogen peroxide pretreatment of energy crops for biogas production
  8. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule
  9. Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions
  10. Structure and vibrational spectra of copper(II) 2-pyridylmethanolate tetrahydrate
  11. Synthesis and characterization of a silylated Brazilian clay mineral surface
  12. Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization
  13. Synthesis and insecticidal activity of 6,8-dichloro-quinazoline derivatives containing a sulfide substructure
  14. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis
  15. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities
  16. Synthesis, characterization, and application of a new tripodal ligand for the preparation of LSCF(6482) perovskite
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0529-z/pdf?lang=de
Button zum nach oben scrollen