Abstract
Adsorption of human immunoglobulin G (IgG) on a commercial cation exchanger with a grafted polymer layer was investigated at pH 4.5 and in the NaCl concentration range of 0–150 mM. Adsorption equilibrium was determined in static batch experiments and verified in batch uptake experiments. Parameters of the Langmuir isotherm were estimated for each salt concentration separately. The batch uptake experiments provided also the estimates of effective pore diffusion coefficients of IgG for individual protein and salt concentrations. The values of the effective pore diffusion coefficient depended strongly on both factors. They increased by about 5–15 times with the NaCl concentration and decreased about three times with the protein concentration. The quality of the estimated parameters was confirmed by frontal experiments described by the general rate model of chromatography.
[1] Bowes, B. D., & Lenhoff, A. M. (2011a). Protein adsorption and transport in dextran-modified ion-exchange media. III. Effects of resin charge density and dextran content on adsorption and intraparticle uptake. Journal of Chromatography A, 1218, 7180–7188. DOI: 10.1016/j.chroma.2011.08.039. http://dx.doi.org/10.1016/j.chroma.2011.08.03910.1016/j.chroma.2011.08.039Search in Google Scholar
[2] Bowes, B. D., & Lenhoff, A. M. (2011b). Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough. Journal of Chromatography A, 1218, 4698–4708. DOI: 10.1016/j.chroma.2011.05.054. http://dx.doi.org/10.1016/j.chroma.2011.05.05410.1016/j.chroma.2011.05.054Search in Google Scholar
[3] Chung, S. F., & Wen, C. Y. (1968). Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE Journal, 14, 857–866. DOI: 10.1002/aic.690140608. http://dx.doi.org/10.1002/aic.69014060810.1002/aic.690140608Search in Google Scholar
[4] Conder, J. R., & Hayek, B. O. (2000). Adsorption and desorption kinetics of bovine serum albumin in ion exchange and hydrophobic interaction chromatography on silica matrices. Biochemical Engineering Journal, 6, 225–232. DOI: 10.1016/s1369-703x(00)00094-2. http://dx.doi.org/10.1016/S1369-703X(00)00094-210.1016/S1369-703X(00)00094-2Search in Google Scholar
[5] Cussler, E. L., Aris, R., & Bhown, A. (1989). On the limits of facilitated diffusion. Journal of Membrane Science, 43, 149–164. DOI: 10.1016/s0376-7388(00)85094-2. http://dx.doi.org/10.1016/S0376-7388(00)85094-210.1016/S0376-7388(00)85094-2Search in Google Scholar
[6] Denton, G., Murray, A., Price, M. R., & Levison, P. R. (2001). Direct isolation of monoclonal antibodies from tissue culture supernatant using the cation-exchange cellulose Express-Ion S. Journal of Chromatography A, 908, 223–234. DOI: 10.1016/s0021-9673(00)00834-7. http://dx.doi.org/10.1016/S0021-9673(00)00834-710.1016/S0021-9673(00)00834-7Search in Google Scholar
[7] DePhillips, P., & Lenhoff, A. M. (2001). Determinants of protein retention characteristics on cation-exchange adsorbents. Journal of Chromatography A, 933, 57–72. DOI: 10.1016/s0021-9673(01)01275-4. http://dx.doi.org/10.1016/S0021-9673(01)01275-410.1016/S0021-9673(01)01275-4Search in Google Scholar
[8] Dismer, F., & Hubbuch, J. (2007). A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. Journal of Chromatography A, 1149, 312–320. DOI: 10.1016/j.chroma.2007.03.074. http://dx.doi.org/10.1016/j.chroma.2007.03.07410.1016/j.chroma.2007.03.074Search in Google Scholar PubMed
[9] Dismer, F., Petzold, M., & Hubbuch, J. (2008). Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents. Journal of Chromatography A, 1194, 11–21. DOI: 10.1016/j.chroma.2007.12.085. http://dx.doi.org/10.1016/j.chroma.2007.12.08510.1016/j.chroma.2007.12.085Search in Google Scholar PubMed
[10] Follman, D. K., & Fahrner, R. L. (2004). Factorial screening of antibody purification processes using three chromatography steps without protein A. Journal of Chromatography A, 1024, 79–85. DOI: 10.1016/j.chroma.2003.10.060. http://dx.doi.org/10.1016/j.chroma.2003.10.06010.1016/j.chroma.2003.10.060Search in Google Scholar PubMed
[11] Forrer, N., Butte, A., & Morbidelli, M. (2008a). Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part I: Adsorption characterization. Journal of Chromatography A, 1214, 59–70. DOI: 10.1016/j.chroma.2008.10.048. 10.1016/j.chroma.2008.10.048Search in Google Scholar PubMed
[12] Forrer, N., Butte, A., & Morbidelli, M. (2008b). Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part II: Adsorption modelling. Journal of Chromatography A, 1214, 71–80. DOI: 10.1016/j.chroma.2008.10.047. http://dx.doi.org/10.1016/j.chroma.2008.10.04710.1016/j.chroma.2008.10.047Search in Google Scholar PubMed
[13] Harinarayan, C., Mueller, J., Ljunglöf, A., Fahrner, R., Van Alstine, J., & van Reis, R. (2006). An exclusion mechanism in ion exchange chromatography. Biotechnology and Bioengineering, 95, 775–787. DOI: 10.1002/bit.21080. http://dx.doi.org/10.1002/bit.2108010.1002/bit.21080Search in Google Scholar PubMed
[14] Hunter, A. K., & Carta, G. (2002). Protein adsorption on novel acrylamido-based polymeric ion-exchangers: IV. Effects of protein size on adsorption capacity and rate. Journal of Chromatography A, 971, 105–116. DOI: 10.1016/s0021-9673(02)01027-0. http://dx.doi.org/10.1016/S0021-9673(02)01027-010.1016/S0021-9673(02)01027-0Search in Google Scholar
[15] Lan, Q. D., Bassi, A. S., Zhu, J. X., & Margaritis, A. (2001). A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chemical Engineering Journal, 81, 179–186. DOI: 10.1016/s1385-8947(00)00197-2. http://dx.doi.org/10.1016/S1385-8947(00)00197-210.1016/S1385-8947(00)00197-2Search in Google Scholar
[16] Lenhoff, A. M. (2011). Protein adsorption and transport in polymer-functionalized ion-exchangers. Journal of Chromatography A, 1218, 8748–8759. DOI: 10.1016/j.chroma.2011.06.061. http://dx.doi.org/10.1016/j.chroma.2011.06.06110.1016/j.chroma.2011.06.061Search in Google Scholar
[17] Ljunglöf, A., Lacki, K. M., Mueller, J., Harinarayan, C., van Reis, R., Fahrner, R., & Van Alstine, J. M. (2007). Ion exchange chromatography of antibody fragments. Biotechnology and Bioengineering, 96, 515–524. DOI: 10.1002/bit.21124. http://dx.doi.org/10.1002/bit.2112410.1002/bit.21124Search in Google Scholar
[18] McCue, J. T., Kemp, G., Low, D., & Quiñones-Garcia, I. (2003). Evaluation of protein-A chromatography media. Journal of Chromatography A, 989, 139–153. DOI: 10.1016/s0021-9673(03)00005-0. http://dx.doi.org/10.1016/S0021-9673(03)00005-010.1016/S0021-9673(03)00005-0Search in Google Scholar
[19] Melter, L., Butte, A., & Morbidelli, M. (2008). Preparative weak cation-exchange chromatography of monoclonal antibody variants: I. Single-component adsorption. Journal of Chromatography A, 1200, 156–165. DOI: 10.1016/j.chroma.2008.05.061. http://dx.doi.org/10.1016/j.chroma.2008.05.06110.1016/j.chroma.2008.05.061Search in Google Scholar
[20] Müller, E. (2003). Comparison between mass transfer properties of weak-anion-exchange resins with graft-functionalized polymer layers and traditional ungrafted resins. Journal of Chromatography A, 1006, 229–240. DOI: 10.1016/s0021-9673(03)00555-7. http://dx.doi.org/10.1016/S0021-9673(03)00555-710.1016/S0021-9673(03)00555-7Search in Google Scholar
[21] Necina, R., Amatschek, K., & Jungbauer, A. (1998). Capture of human monoclonal antibodies from cell culture supernatant by ion exchange media exhibiting high charge density. Biotechnology and Bioengineering, 60, 689–698. DOI: 10.1002/(SICI)1097-0290(19981220)60:6〈689::AID-BIT6〉3.0.CO;2-M. http://dx.doi.org/10.1002/(SICI)1097-0290(19981220)60:6<689::AID-BIT6>3.0.CO;2-M10.1002/(SICI)1097-0290(19981220)60:6<689::AID-BIT6>3.0.CO;2-MSearch in Google Scholar
[22] Perez Almodovar, E. X., Tao, Y. Y., & Carta, G. (2011). Protein adsorption and transport in cation exchangers with a rigid backbone matrix with and without polymeric surface extenders. Biotechnology Progress, 27, 1264–1272. DOI: 10.1002/btpr.643. http://dx.doi.org/10.1002/btpr.64310.1002/btpr.643Search in Google Scholar
[23] Perez-Almodovar, E. X., Wu, Y. G., & Carta, G. (2012). Multicomponent adsorption of monoclonal antibodies on macroporous and polymer grafted cation exchangers. Journal of Chromatography A, 1264, 48–56. DOI: 10.1016/j.chroma.2012.09.064. http://dx.doi.org/10.1016/j.chroma.2012.09.06410.1016/j.chroma.2012.09.064Search in Google Scholar
[24] Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007). Downstream processing of monoclonal antibodies-Application of platform approaches. Journal of Chromatography B, 848, 28–39. DOI: 10.1016/j.jchromb.2006.09.026. http://dx.doi.org/10.1016/j.jchromb.2006.09.02610.1016/j.jchromb.2006.09.026Search in Google Scholar PubMed
[25] Stewart, W. E., Caracotsios, M., & Sorensen, J. P. (1992). Parameter estimation from multiresponse data. AIChE Journal, 38, 641–650. DOI: 10.1002/aic.690380502. http://dx.doi.org/10.1002/aic.69038050210.1002/aic.690380502Search in Google Scholar
[26] Stone, M. C., & Carta, G. (2007). Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Journal of Chromatography A, 1146, 202–215. DOI: 10.1016/j.chroma.2007.02.041. http://dx.doi.org/10.1016/j.chroma.2007.02.04110.1016/j.chroma.2007.02.041Search in Google Scholar PubMed
[27] Stone, M. C., Tao, Y. Y., & Carta, G. (2009). Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography: Effect of ionic strength and protein characteristics. Journal of Chromatography A, 1216, 4465–4474. DOI: 10.1016/j.chroma.2009.03.044. http://dx.doi.org/10.1016/j.chroma.2009.03.04410.1016/j.chroma.2009.03.044Search in Google Scholar PubMed
[28] Tao, Y. Y., & Carta, G. (2008). Rapid monoclonal antibody adsorption on dextran-grafted agarose media for ion-exchange chromatography. Journal of Chromatography A, 1211, 70–79. DOI: 10.1016/j.chroma.2008.09.096. http://dx.doi.org/10.1016/j.chroma.2008.09.09610.1016/j.chroma.2008.09.096Search in Google Scholar PubMed
[29] Tao, Y. Y., Perez Almodovar, E. X., Carta, G., Ferreira, G., & Robbins, D. (2011a). Adsorption kinetics of deamidated antibody variants on macroporous and dextran-grafted cation exchangers. III. Microscopic studies. Journal of Chromatography A, 1218, 8027–8035. DOI: 10.1016/j.chroma.2011.09.010. http://dx.doi.org/10.1016/j.chroma.2011.09.01010.1016/j.chroma.2011.09.010Search in Google Scholar PubMed
[30] Tao, Y. Y., Carta, G., Ferreira, G., & Robbins, D. (2011b). Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics. Journal of Chromatography A, 1218, 1530–1537. DOI: 10.1016/j.chroma.2011.01.050. http://dx.doi.org/10.1016/j.chroma.2011.01.05010.1016/j.chroma.2011.01.050Search in Google Scholar PubMed
[31] Tao, Y. Y., Chen, N. Y., Carta, G., Ferreira, G., & Robbins, D. (2012). Modeling multicomponent adsorption of monoclonal antibody charge variants in cation exchange columns. AIChE Journal, 58, 2503–2511. DOI: 10.1002/aic.13718. http://dx.doi.org/10.1002/aic.1371810.1002/aic.13718Search in Google Scholar
[32] Tatarova, I., Gramblička, M., Antošova, M., & Polakovič, M. (2008). Characterization of pore structure of chromatographic adsorbents employed in separation of monoclonal antibodies using size-exclusion techniques. Journal of Chromatography A, 1193, 129–135. DOI: 10.1016/j.chroma.2008.04.023. http://dx.doi.org/10.1016/j.chroma.2008.04.02310.1016/j.chroma.2008.04.023Search in Google Scholar PubMed
[33] Wilson, E. J., & Geankoplis, C. J. (1966). Liquid mass transfer at very low Reynolds numbers in packed beds. Industrial & Engineering Chemistry Fundamentals, 5, 9–14. DOI: 10.1021/i160017a002. http://dx.doi.org/10.1021/i160017a00210.1021/i160017a002Search in Google Scholar
[34] Wrzosek, K., Gramblička, M., & Polakovič, M. (2009). Influence of ligand density on antibody binding capacity of cationexchange adsorbents. Journal of Chromatography A, 1216, 5039–5044. DOI: 10.1016/j.chroma.2009.04.073. http://dx.doi.org/10.1016/j.chroma.2009.04.07310.1016/j.chroma.2009.04.073Search in Google Scholar PubMed
[35] Wrzosek, K., Gramblička, M., Tothova, D., Antošova, M., & Polakovič, M. (2010). Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies. Chemical Papers, 64, 461–468. DOI: 10.2478/s11696-010-0019-5. http://dx.doi.org/10.2478/s11696-010-0019-510.2478/s11696-010-0019-5Search in Google Scholar
[36] Wrzosek, K., & Polakovič, M. (2011). Effect of pH on protein adsorption capacity of strong cation exchangers with grafted layer. Journal of Chromatography A, 1218, 6987–6994. DOI: 10.1016/j.chroma.2011.07.097. http://dx.doi.org/10.1016/j.chroma.2011.07.09710.1016/j.chroma.2011.07.097Search in Google Scholar PubMed
[37] Yao, Y., & Lenhoff, A. M. (2006). Pore size distributions of ion exchangers and relation to protein binding capacity. Journal of Chromatography A, 1126, 107–119. DOI: 10.1016/j.chroma.2006.06.057. http://dx.doi.org/10.1016/j.chroma.2006.06.05710.1016/j.chroma.2006.06.057Search in Google Scholar PubMed
[38] Young, M. E., Carroad, P. A., & Bell, R. L. (1980). Estimation of diffusion coefficients of proteins. Biotechnology and Bioengineering, 22, 947–955. DOI: 10.1002/bit.260220504. http://dx.doi.org/10.1002/bit.26022050410.1002/bit.260220504Search in Google Scholar
[39] Zydney, A. L., Harinarayan, C., & van Reis, R. (2009). Modeling electrostatic exclusion effects during ion exchange chromatography of monoclonal antibodies. Biotechnology and Bioengineering, 102, 1131–1140. DOI: 10.1002/bit.22145. http://dx.doi.org/10.1002/bit.2214510.1002/bit.22145Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Fifty years of the Department of Chemical and Biochemical Engineering at the Slovak University of Technology in Bratislava — brief history of research
- Airlift reactor — membrane extraction hybrid system for aroma production
- CFD-based atmospheric dispersion modeling in real urban environments
- Catalytic gasification of pyrolytic oil from tire pyrolysis process
- Kinetics of thermal decomposition of aseptic packages
- Sulphur distribution in the products of waste tire pyrolysis
- Equilibrium and kinetics of protein binding on ion-exchange cellulose membranes with grafted polymer layer
- Modeling of equilibrium and kinetics of human polyclonal immunoglobulin G adsorption on a tentacle cation exchanger
- Design calculations of an extractor for aromatic and aliphatic hydrocarbons separation using ionic liquids
- Effect of viscosity of a liquid membrane containing oleyl alcohol on the pertraction of butyric acid
- Anaerobic treatment of rapeseed meal
- Anoxic granulated biomass and its storage
- Removal of selected chlorinated micropollutants by ozonation
- Degradation and toxicity changes in aqueous solutions of chloroacetic acids by Fenton-like treatment using zero-valent iron
Articles in the same Issue
- Fifty years of the Department of Chemical and Biochemical Engineering at the Slovak University of Technology in Bratislava — brief history of research
- Airlift reactor — membrane extraction hybrid system for aroma production
- CFD-based atmospheric dispersion modeling in real urban environments
- Catalytic gasification of pyrolytic oil from tire pyrolysis process
- Kinetics of thermal decomposition of aseptic packages
- Sulphur distribution in the products of waste tire pyrolysis
- Equilibrium and kinetics of protein binding on ion-exchange cellulose membranes with grafted polymer layer
- Modeling of equilibrium and kinetics of human polyclonal immunoglobulin G adsorption on a tentacle cation exchanger
- Design calculations of an extractor for aromatic and aliphatic hydrocarbons separation using ionic liquids
- Effect of viscosity of a liquid membrane containing oleyl alcohol on the pertraction of butyric acid
- Anaerobic treatment of rapeseed meal
- Anoxic granulated biomass and its storage
- Removal of selected chlorinated micropollutants by ozonation
- Degradation and toxicity changes in aqueous solutions of chloroacetic acids by Fenton-like treatment using zero-valent iron