Home Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
Article
Licensed
Unlicensed Requires Authentication

Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase

  • Pavan GhattyVenkataKrishna EMAIL logo , Neelima Chavali and Edward Uberbacher
Published/Copyright: April 12, 2013
Become an author with De Gruyter Brill

Abstract

The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase is a subject of great interest. Flexibility of these residues has been suspected to be a key player in controlling the ligand traversal in the gorge. This raises the question of whether the over-representation of aromatic residues in the gorge implies higher-than-normal flexibility of these residues. The current study suggests that it does not. Large changes in the hydrophobic cross-sectional area due to dihedral oscillations are probably the reason of their presence in the gorge.

[1] Birks, J., & Harvey, R. J. (2006). Donepezil for dementia due to Alzheimer’s disease. Cochrane Database of Systematic Reviews, 1, CD001190. DOI:10.1002/14651858.cd001190.pub2. 10.1002/14651858.CD001190.pub2Search in Google Scholar

[2] Davis, I.W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L.W., Arendall, W. B., Snoeyink, J., Richardson, J. S., & Richardson, D. C. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research, 35, W375–W383. DOI: 10.1093/nar/gkm216. http://dx.doi.org/10.1093/nar/gkm21610.1093/nar/gkm216Search in Google Scholar

[3] Dvir, H., Jiang, H. L., Wong, D. M., Harel, M., Chetrit, M., He, X. C., Jin, G. Y., Yu, G. L., Tang, X. C., Silman, I., Bai, D. L., & Sussman, J. L. (2002). X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (−)-huperzine B: structural evidence for an active site rearrangement. Biochemistry, 41, 10810–10818. DOI:10.1021/bi020151. http://dx.doi.org/10.1021/bi020151+10.1021/bi020151+Search in Google Scholar

[4] Geula, C., & Mesulam, M. M. (1995). Cholinesterases and the pathology of Alzheimer disease. Alzheimer Disease & Associated Disorders, 9, 23–28. DOI: 10.1097/00002093-199501002-00005. http://dx.doi.org/10.1097/00002093-199501002-0000510.1097/00002093-199501002-00005Search in Google Scholar

[5] Gilson, M. K., Straatsma, T. P., McCammon, J. A., Ripoll, D. R., Faerman, C. H., Axelsen, P. H., Silman, I., & Sussman, J. L. (1994). Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science, 263, 1276–1278 DOI: 10.1126/science.8122110. http://dx.doi.org/10.1126/science.812211010.1126/science.8122110Search in Google Scholar

[6] Harel, M., Sonoda, L. K., Silman, I., Sussman, J. L., & Rosenberry, T. L. (2008). Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetyl-cholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site. Journal of the American Chemical Society, 130, 7856–7861. DOI: 10.1021/ja7109822. http://dx.doi.org/10.1021/ja710982210.1021/ja7109822Search in Google Scholar

[7] Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 14, 33–38. DOI: 10.1016/0263-7855(96)00018-5. http://dx.doi.org/10.1016/0263-7855(96)00018-510.1016/0263-7855(96)00018-5Search in Google Scholar

[8] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926–935. DOI: 10.1063/1.445869. http://dx.doi.org/10.1063/1.44586910.1063/1.445869Search in Google Scholar

[9] Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9, 646–652. DOI: 10.1038/nsb0902-646. http://dx.doi.org/10.1038/nsb0902-64610.1038/nsb0902-646Search in Google Scholar

[10] Kryger, G., Silman, I., & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept (R)): implications for the design of new anti-Alzheimer drugs. Structure with Folding & Design, 7, 297–307. DOI: 10.1016/s0969-2126(99)80040-9. 10.1016/S0969-2126(99)80040-9Search in Google Scholar

[11] Luzar, A., & Chandler, D. (1996). Hydrogen-bond kinetics in liquid water. Nature, 379, 55–57. DOI: 10.1038/37905 5a0. http://dx.doi.org/10.1038/379055a010.1038/37905Search in Google Scholar

[12] MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., & Karplus, M. (1998). Allatom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102, 3586–3616. DOI: 10.1021/jp973084f. http://dx.doi.org/10.1021/jp973084f10.1021/jp973084fSearch in Google Scholar

[13] Mackerell, A. D., Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25, 1400–1415. DOI:10.1002/jcc.20065. http://dx.doi.org/10.1002/jcc.2006510.1002/jcc.20065Search in Google Scholar

[14] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802. DOI:10.1002/jcc.20289. http://dx.doi.org/10.1002/jcc.2028910.1002/jcc.20289Search in Google Scholar

[15] Quinn, D. M. (1987). Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, 87, 955–979. DOI: 10.1021/cr00081a005. http://dx.doi.org/10.1021/cr00081a00510.1021/cr00081a005Search in Google Scholar

[16] Shen, T. Y., Tai, K. H., Henchman, R. H., & McCammon, J. A. (2002). Molecular dynamics of acetylcholinesterase. Accounts of Chemical Research, 35, 332–340. DOI: 10.1021/ar010025i. http://dx.doi.org/10.1021/ar010025i10.1021/ar010025iSearch in Google Scholar

[17] Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253, 872–879. DOI: 10.1126/science.1678899. http://dx.doi.org/10.1126/science.167889910.1126/science.1678899Search in Google Scholar

[18] Tarek, M., & Tobias, D. J. (2002). Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Physical Review Letters, 88, 138101. DOI: 10.1103/physrevlett.88.138101. http://dx.doi.org/10.1103/PhysRevLett.88.13810110.1103/PhysRevLett.88.138101Search in Google Scholar

[19] Wlodek, S. T., Clark, T. W., Scott, L. R., & McCammon, J. A. (1997). Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. Journal of the American Chemical Society, 119, 9513–9522. DOI: 10.1021/ja971226d. http://dx.doi.org/10.1021/ja971226d10.1021/ja971226dSearch in Google Scholar

[20] Wüthrich, K., & Wagner, G. (1978). Internal motion in globular proteins. Trends in Biochemical Sciences, 3, 227–230. DOI: 10.1016/s0968-0004(78)94607-8. http://dx.doi.org/10.1016/S0968-0004(78)94607-810.1016/S0968-0004(78)94607-8Search in Google Scholar

[21] Xu, Y. C., Colletier, J. P., Weik, M., Jiang, H. L., Moult, J., Silman, I., & Sussman, J. L. (2008). Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophysical Journal, 95, 2500–2511. DOI: 10.1529/biophysj.108.129601. http://dx.doi.org/10.1529/biophysj.108.12960110.1529/biophysj.108.129601Search in Google Scholar PubMed PubMed Central

[22] Zhou, H. X., Wlodek, S. T., & McCammon, J. A. (1998). Conformation gating as a mechanism for enzyme specificity. Proceedings of the National Academy of Sciences of the United States of America, 95, 9280–9283. http://dx.doi.org/10.1073/pnas.95.16.928010.1073/pnas.95.16.9280Search in Google Scholar PubMed PubMed Central

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0354-4/pdf
Scroll to top button