Startseite Enzymatic synthesis of kojic acid esters and their potential industrial applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enzymatic synthesis of kojic acid esters and their potential industrial applications

  • Ahmad Lajis EMAIL logo , Mahiran Basri , Rosfarizan Mohamad , Muhajir Hamid , Siti Ashari , Nurazwa Ishak , Azulia Zookiflie und Arbakariya Ariff
Veröffentlicht/Copyright: 16. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, enzymatic methods for the synthesis of 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one (kojic acid) esters are reviewed. Important process parameters related to the synthesis of kojic acid esters such as the type of immobilized lipase, solvent, temperature, initial water activity, water content, pH, metal salts, enzyme loading, substrates mole ratio, and acyl donors are highlighted and discussed. The properties of kojic acid esters related to their solubility, stability, cytotoxicity, depigmenting activity, tyrosinase inhibitory, metal-chelating, anti-oxidant, and other biological activities are also highlighted. At present, kojic acid and its esters are widely used in cosmetic and skin health industries as skin whitening agents. The advantages and disadvantages of various kojic acid esters are compared and possible industrial applications of these derivatives are also discussed.

[1] Acosta, A., Filice, M., Fernandez-Lorente, G., Palomo, J. M., & Guisan, J. M. (2011). Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized Rhizomucor miehei lipase. Bioresource Technology, 102, 507–512. DOI: 10.1016/j.biortech.2010.08.095. http://dx.doi.org/10.1016/j.biortech.2010.08.09510.1016/j.biortech.2010.08.095Suche in Google Scholar PubMed

[2] Adachi, S., & Kobayashi, T. (2005). Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. Journal of Bioscience and Bioengineering, 99, 87–94. DOI: 10.1263/jbb.99.087. http://dx.doi.org/10.1263/jbb.99.87Suche in Google Scholar

[3] Adnani, A., Basri, M., Chaibakhsh, N., Ahangar, H. A., Salleh, A. B., Abdul Rahman, R. N. Z. R., & Abdul Rahman, M. B. (2011). Chemometric analysis of lipase-catalyzed synthesis of xylitol esters in a solvent-free system. Carbohydrate Research, 346, 472–479. DOI: 10.1016/j.carres.2010.12.023. http://dx.doi.org/10.1016/j.carres.2010.12.02310.1016/j.carres.2010.12.023Suche in Google Scholar PubMed

[4] Al-Edresi, S., & Baie, S. (2010). In-vitro and in-vivo evaluation of a photo-protective kojic dipalmitate loaded into nanocreams. Asian Journal of Pharmaceutical Sciences, 5, 251–265. Suche in Google Scholar

[5] Ariff, A. B., Rosfarizan, M., Herng, L. S., Madihah, S., & Karim, M. I. A. (1997). Kinetics and modelling of kojic acid production by Aspergillus flavus Link in batch fermentation and resuspended mycelial system. World Journal of Microbiology & Biotechnology, 13, 195–201. DOI: 10.1023/a:1018593815266. http://dx.doi.org/10.1023/A:101859381526610.1023/A:1018593815266Suche in Google Scholar

[6] Asghari, S., Faraki-Najjarkolaee, M., & Ahmadipour, M. (2010). Regioselective vinylation of kojic acid using acetylenic esters in the presence of triphenylphosphine or tert-butyl isocyanide. Monatshefte für Chemie — Chemical Monthly, 141, 781–786. DOI: 10.1007/s00706-010-0327-z. http://dx.doi.org/10.1007/s00706-010-0327-z10.1007/s00706-010-0327-zSuche in Google Scholar

[7] Ashari, S. E., Rosfarizan, M., Ariff, A., Basri, M., & Salleh, A. B. (2009). Optimization of enzymatic synthesis of palm-based kojic acid ester using response surface methodology. Journal of Oleo Science, 58, 503–510. DOI: 10.5650/jos.58.503. http://dx.doi.org/10.5650/jos.58.50310.5650/jos.58.503Suche in Google Scholar PubMed

[8] Balaguer, A., Salvador, A., & Chisvert, A. (2008). A rapid and reliable size-exclusion chromatographic method for determination of kojic dipalmitate in skin-whitening cosmetic products. Talanta, 75, 407–411. DOI: 10.1016/j.talanta.2007.11.021. http://dx.doi.org/10.1016/j.talanta.2007.11.02110.1016/j.talanta.2007.11.021Suche in Google Scholar PubMed

[9] Briganti, S., Camera, E., & Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research, 16, 101–110. DOI: 10.1034/j.1600-0749.2003.00029.x. http://dx.doi.org/10.1034/j.1600-0749.2003.00029.x10.1034/j.1600-0749.2003.00029.xSuche in Google Scholar PubMed

[10] Brígda, A. I. S., Pinheiro, Á. D. T., Ferreira, A. L. O., Pinto, G. A. S., & Gonçalves, L. R. B. (2007). Immobilization of Candida antarctica lipase B by covalent attachment to green coconut fiber. Applied Biochemistry and Biotechnology, 137–140, 67–80. DOI: 10.1007/s12010-007-9040-8. http://dx.doi.org/10.1007/s12010-007-9040-810.1007/s12010-007-9040-8Suche in Google Scholar PubMed

[11] Burdock, G. A., Soni, M. G., & Carabin, I. G. (2001). Evaluation of health aspects of kojic acid in food. Regulatory Toxicology and Pharmacology, 33, 80–101. DOI: 10.1006/rtph.2000.1442. http://dx.doi.org/10.1006/rtph.2000.144210.1006/rtph.2000.1442Suche in Google Scholar PubMed

[12] Chaibakhsh, N., Abdul-Rahman, M. B., Abd-Aziz, S., Basri, M., Salleh, A. B., & Abdul-Rahman, R. N. Z. R. (2009). Optimized lipase-catalysed synthesis of adipase ester in a solventfree system. Journal of Industrial Microbiology & Biotechnology, 36, 1149–1155. DOI: 10.1007/s10295-009-0596-x. http://dx.doi.org/10.1007/s10295-009-0596-x10.1007/s10295-009-0596-xSuche in Google Scholar PubMed

[13] Chaibakhsh, N., Abdul-Rahman, M. B., Vahabzadeh, F., Abd-Aziz, S., Basri, M., & Salleh, A. B. (2010). Optimization of operational conditions for adipate ester synthesis in a stirred tank reactor. Biotechnology and Bioprocess Engineering, 15, 846–853. DOI: 10.1007/s12257-010-0001-7. http://dx.doi.org/10.1007/s12257-010-0001-710.1007/s12257-010-0001-7Suche in Google Scholar

[14] Chamouleau, F., Coulon, D., Girardin, M., & Ghoul, M. (2001). Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. Journal of Molecular Catalysis B: Enzymatic, 11, 949–954. DOI: 10.1016/s1381-1177 (00)00166-1. http://dx.doi.org/10.1016/S1381-1177(00)00166-110.1016/S1381-1177(00)00166-1Suche in Google Scholar

[15] Chen, C. S., Liu, K. J., Lou, Y. H., & Shieh, C. J. (2002). Optimisation of kojic acid monolaurate synthesis with lipase PS from Pseudomonas cepacia. Journal of the Science of Food & Agriculture, 82, 601–605. DOI: 10.1002/jsfa.1083. http://dx.doi.org/10.1002/jsfa.108310.1002/jsfa.1083Suche in Google Scholar

[16] Cheong, L. Z., Tan, C. P., Long, K., Yusoff, M. S. A., Arifin, N., Lo, S. K., & Lai, O. M. (2007). Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: Optimization using response surface methodology. Food Chemistry, 105, 1614–1622. DOI: 10.1016/j.foodchem.2007.03.070. http://dx.doi.org/10.1016/j.foodchem.2007.03.07010.1016/j.foodchem.2007.03.070Suche in Google Scholar

[17] Cho, J. C., Rho, H. S., Baek, H. S., Ahn, S. M., Woo, B. Y., Hong, Y. D., Cheon, J. W., Heo, J. M., Shin, S. S., Park, Y. H., & Suh, K. D. (2012). Depigmenting activity of new kojic acid derivative obtained as a side product in the synthesis of cinnamate of kojic acid. Bioorganic & Medicinal Chemistry Letters, 22, 2004–2007. DOI: 10.1016/j.bmcl.2012.01.032. http://dx.doi.org/10.1016/j.bmcl.2012.01.03210.1016/j.bmcl.2012.01.032Suche in Google Scholar

[18] Chowdary, G. V., Ramesh, M. N., & Prapulla, S. G. (2000). Enzymic synthesis of isoamyl isovalerate using immobilized lipase from Rhizomucor miehei: a multivariate analysis. Process Biochemistry, 36, 331–339. DOI: 10.1016/s0032-9592(00)00218-1. http://dx.doi.org/10.1016/S0032-9592(00)00218-110.1016/S0032-9592(00)00218-1Suche in Google Scholar

[19] Chowdary, G. V., & Prapulla, S. G. (2002). The influence of water activity on the lipase catalysed synthesis of butyl butyrate transesterification. Process Biochemistry, 38, 393–397. DOI: 10.1016/s0032-9592(02)00096-1. http://dx.doi.org/10.1016/S0032-9592(02)00096-110.1016/S0032-9592(02)00096-1Suche in Google Scholar

[20] Chusiri, Y., Wongpoomchai, R., Kakekashi, A., Wei, M., Wanibuchi, H., Vinitketkumnuan, U., & Fukushima, S. (2011). Non-genotoxic mode of action and possible threshold for hepatocarcinogenicity of kojic acid in F344 rats. Food and Chemical Toxicology, 49, 471–476. DOI: 10.1016/j.fct.2010.11.027. http://dx.doi.org/10.1016/j.fct.2010.11.02710.1016/j.fct.2010.11.027Suche in Google Scholar PubMed

[21] Clendennen, S. K., Boaz, N. W., & Clauson, J. M. (2012). European Patent No. 2,155,886 B1. London, UK: European Patent Office. Suche in Google Scholar

[22] Csanádi, Z., Belafi-Bako, K., Szentgyörgyi, E., Gubicza, L., Knez, E. K., & Habulin, M. (2010). Enzymatic esterification of glycerol and stearic acid in non-conventional media. Acta Chimica Slovenica, 57, 244–249. Suche in Google Scholar

[23] Dahlan, I., Kamaruddin, A. H., & Najafpour, G. D. (2005). Citronellyl butyrate synthesis in non-conventional media using packed-bed immobilized Candida rugosa lipase reactor. International Journal of Engineering, 18, 153–164. Suche in Google Scholar

[24] Dowd, P. F. (1990). U.S. Patent No. 4,956,353. Washington, DC, USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[25] El-Aasar, S. A. (2006). Cultural conditions studies on kojic acid production by Aspergillus parasiticus. International Journal of Agricultural Biology, 8, 468–473. Suche in Google Scholar

[26] Hassan, M. A., Ismail, F., Yamamoto, S., Yamada, H., & Nakanishi, K. (1995). Enzymatic synthesis of galactosylkojic acid with immobilized β-galactosidase from Bacillus circulans. Bioscience, Biotechnology and Biochemistry, 59, 543–545. DOI: 10.1271/bbb.59.543. http://dx.doi.org/10.1271/bbb.59.54310.1271/bbb.59.543Suche in Google Scholar

[27] Hsieh, H. J., Giridhar, R., & Wu, W. T. (2007). Regioselective formation of kojic acid-7-O-α-d-glucopyranoside by whole cells of mutated Xanthomonas campestris. Enzyme and Microbial Technology, 40, 324–328. DOI: 10.1016/j.enzmictec.2006.04.014. http://dx.doi.org/10.1016/j.enzmictec.2006.04.01410.1016/j.enzmictec.2006.04.014Suche in Google Scholar

[28] Jin, Z., Ntwali, J., Han, S. Y., Zheng, S. P., & Lin, Y. (2012). Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor. Journal of Biotechnology, 159, 108–114. DOI: 10.1016/j.jbiotec.2012.02.013. http://dx.doi.org/10.1016/j.jbiotec.2012.02.01310.1016/j.jbiotec.2012.02.013Suche in Google Scholar

[29] Kaatz, H., Streffer, K., Wollenberger, U., & Peter, M. G. (1999). Inhibition of mushroom tyrosinase by kojic acid octanoates. Zeitschrift für Naturforschung, 54c, 70–74. 10.1515/znc-1999-1-213Suche in Google Scholar

[30] Kang, S. S., Kim, H. J., Jin, C. B., & Lee, Y. S. (2009). Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl)acrylic acid ester derivatives. Bioorganic & Medicinal Chemistry Letters, 19, 188–191. DOI:10.1016/j.bmcl.2008.10.119. http://dx.doi.org/10.1016/j.bmcl.2008.10.11910.1016/j.bmcl.2008.10.119Suche in Google Scholar

[31] Kanwar, S. S., Kaushal, R. K., Verma, M. L., Kumar, Y., Chauhan, G. S., Gupta, R., & Chimni, S. S. (2005). Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Indian Journal of Microbiology, 45, 187–193. Suche in Google Scholar

[32] Kapucu, N., Güvenç, A., Mehmetoglu, U., Çalimi, A., & Kapucu, H. (2003). Lipase catalysed synthesis of oleyl oleate: Optimization by response surface methodology. Chemical Engineering Communications, 190, 779–796. DOI: 10.1080/00986440302107. http://dx.doi.org/10.1080/0098644030210710.1080/00986440302107Suche in Google Scholar

[33] Kawashima, A., Shimada, Y., Yamamoto, M., Sugihara, A., Nagao, T., Komemushi, S., & Tominaga, Y. (2001). Enzymatic synthesis of high-purity structured lipids with caprylic acid at 1,3-positions and polyunsaturated fatty acid at 2-position. Journal of the American Oil Chemists’ Society, 78, 611–616. DOI: 10.1007/s11746-001-0313-0. http://dx.doi.org/10.1007/s11746-001-0313-010.1007/s11746-001-0313-0Suche in Google Scholar

[34] Keng, P. S., Basri, M., Ariff, A. B., Abdul Rahman, M. B., Abdul Rahman, R. N. Z., & Salleh, A. B. (2008). Scale-up synthesis of lipase-catalyzed palm esters in stirredtank reactor. Bioresource Technology, 99, 6097–6104. DOI: 10.1016/j.biortech.2007.12.049. http://dx.doi.org/10.1016/j.biortech.2007.12.04910.1016/j.biortech.2007.12.049Suche in Google Scholar

[35] Khamaruddin, N. H., Basri, M., Lian, G. E. C., Salleh, A. B., Abdul-Rahman, R. N. Z. R., Ariff, A., Mohamad, R., & Awang, R. (2008). Enzymatic synthesis and characterization of palm-based kojic acid ester. Journal of Oil Palm Research, 20, 461–469. Suche in Google Scholar

[36] Kim, D. H., Hwang, J. S., Baek, H. S., Kim, K. J., Lee, B. G., Chang, I., Kang, H. H., & Lee, O. S. (2003). Development of 5-[(3-aminopropyl) phosphinooxy]-2-(hydroxymethyl)-4H-pyran-4-one as a novel whitening agent. Chemical and Pharmaceutical Bulletin, 51, 113–116. DOI: 10.1248/cpb.51.113. http://dx.doi.org/10.1248/cpb.51.11310.1248/cpb.51.113Suche in Google Scholar

[37] Knez, Ž., Leitgeb, M., Završnik, D., & Lavrič, B. (1990). Synthesis of oleic acid esters with immobilized lipase. European Journal of Lipid Science and Technology, 92, 169–172. DOI: 10.1002/lipi.19900920411. 10.1002/lipi.19900920411Suche in Google Scholar

[38] Kobayashi, T., Adachi, S., Nakanishi, K., & Matsuno, R. (2001). Semi-continuous production of lauroyl kojic acid through lipase-catalyzed condensation in acetonitrile. Biochemical Engineering Journal, 9, 85–89. DOI: 10.1016/s1369-703x(01)00129-2. http://dx.doi.org/10.1016/S1369-703X(01)00129-210.1016/S1369-703X(01)00129-2Suche in Google Scholar

[39] Kosugi, Y., Tanaka, H., & Tomizuka, N. (1990). Continuous hydrolysis of oil by immobilized lipase in a countercurrent reactor. Biotechnology and Bioengineering, 36, 617–622. DOI: 10.1002/bit.260360609. http://dx.doi.org/10.1002/bit.26036060910.1002/bit.260360609Suche in Google Scholar PubMed

[40] Krishna, S. H., Sattur, A. P., & Karanth, N. G. (2001). Lipasecatalyzed synthesis of isoamyl isobutyrate — optimization using a central composite rotatable design. Process Biochemistry, 37, 9–16. DOI: 10.1016/s0032-9592(01)00161-3. http://dx.doi.org/10.1016/S0032-9592(01)00161-310.1016/S0032-9592(01)00161-3Suche in Google Scholar

[41] Kumar, S., Ola, R. P., Pahujani, S., Kaushal, R., Kanwar, S. S., & Gupta, R. (2006). Thermostability and esterification of a polyethylene-immobilized lipase from Bacillus coagulans BTS-3. Journal of Applied Polymer Science, 102, 3986–3993. DOI: 10.1002/app.24154. http://dx.doi.org/10.1002/app.2415410.1002/app.24154Suche in Google Scholar

[42] Kumar, S., & Kanwar, S. S. (2011). Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresource Technology, 102, 2162–2167. DOI: 10.1016/j.biortech.2010.10.027. http://dx.doi.org/10.1016/j.biortech.2010.10.02710.1016/j.biortech.2010.10.027Suche in Google Scholar PubMed

[43] Kuo, C. H., Chen, H. H., Chen, J. H., Liu, Y. C., & Shieh, C. J. (2012). High yield of wax ester synthesized from cetyl alcohol and octanoic acid by lipozyme RMIM and Novozym 435. International Journal of Molecular Sciences, 13, 11694–11704. DOI: 10.3390/ijms130911694. http://dx.doi.org/10.3390/ijms13091169410.3390/ijms130911694Suche in Google Scholar PubMed PubMed Central

[44] Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30, 81–87. DOI: 10.1002/bit.260300112. http://dx.doi.org/10.1002/bit.26030011210.1002/bit.260300112Suche in Google Scholar PubMed

[45] Lajis, A. F. B., Hamid, M., & Ariff, A. B. (2012). Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. Journal of Biomedicine and Biotechnology, 2012, 952452. DOI: 10.1155/2012/952452. http://dx.doi.org/10.1155/2012/95245210.1155/2012/952452Suche in Google Scholar PubMed PubMed Central

[46] Laszlo, J. A., Jackson, M., & Blanco, R. M. (2011). Active-site titration analysis of surface influences on immobilized Candida antarctica lipase B activity. Journal of Molecular Catalysis B: Enzymatic, 69, 60–65. DOI: 10.1016/j.molcatb.2010.12.011. http://dx.doi.org/10.1016/j.molcatb.2010.12.01110.1016/j.molcatb.2010.12.011Suche in Google Scholar

[47] Li, X. F., Jeong, J. H., Lee, K. T., Rho, J. R., Choi, H. D., Kang, J. S., & Son, B. W. (2003). γ-Pyrone derivatives, kojic acid methyl ethers from a marine-derived fungus Altenaria sp. Archives of Pharmacal Research, 26, 532–534. DOI: 10.1007/bf02976876. http://dx.doi.org/10.1007/BF0297687610.1007/BF02976876Suche in Google Scholar PubMed

[48] Liu, K. J., & Shaw, J. F. (1998). Lipase-catalyzed synthesis of kojic acid esters in organic solvents. Journal of the American Oil Chemists’ Society, 75, 1507–1511. DOI: 10.1007/s11746-998-0086-8. http://dx.doi.org/10.1007/s11746-998-0086-810.1007/s11746-998-0086-8Suche in Google Scholar

[49] Manosroi, A., Wongtrakul, P., Manosroi, J., Midorikawa, U., Hanyu, Y., Yuasa, M., Sugawara, F., Sakai, H., & Abe, M. (2005). The entrapment of kojic oleate in bilayer vesicles. International Journal of Pharmaceutics, 298, 13–25. DOI: 10.1016/j.ijpharm.2005.02.041. http://dx.doi.org/10.1016/j.ijpharm.2005.02.04110.1016/j.ijpharm.2005.02.041Suche in Google Scholar PubMed

[50] Martins, A. B., Graebin, N. G., Lorenzoni, A. S. G., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2011). Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: Reaction optimization by response surface methodology. Process Biochemistry, 46, 2311–2316. DOI: 10.1016/j.procbio.2011.09.011. http://dx.doi.org/10.1016/j.procbio.2011.09.01110.1016/j.procbio.2011.09.011Suche in Google Scholar

[51] Masyithah, Z., Sembiring, S. B., Alfian, Z., & Herawan, T. (2011). The optimization of enzymatic synthesis for lauroyl-n-methyl glucamide surfactants. Indonesian Journal of Chemistry, 11, 223–228. 10.22146/ijc.21384Suche in Google Scholar

[52] Mitani, H., Koshiishi, I., Sumita, T., & Imanari, T. (2001). Prevention of the photodamage in the hairless mouse dorsal skin by kojic acid as an iron chelator. European Journal of Pharmacology, 411, 169–174. DOI: 10.1016/s0014-2999(00)00873-6. http://dx.doi.org/10.1016/S0014-2999(00)00873-610.1016/S0014-2999(00)00873-6Suche in Google Scholar

[53] Mohamad, R., & Ariff, A. B. (2007). Biotransformation of various carbon sources to kojic acid by cell-bound enzyme system of A. flavus Link 44-1. Biochemical Engineering Journal, 35, 203–209. DOI: 10.1016/j.bej.2007.01.015. http://dx.doi.org/10.1016/j.bej.2007.01.01510.1016/j.bej.2007.01.015Suche in Google Scholar

[54] Mohamad, R., Mohamed, M. S., Suhaili, N., Salleh, M. M., & Ariff, A. B. (2010). Kojic acid: Applications and development of fermentation process for production. Biotechnology and Molecular Biology Reviews, 5, 24–37. Suche in Google Scholar

[55] Moto, M., Mori, T., Okamura, M., Kashida, Y., & Mitsumori, K. (2006). Absence of liver tumor-initiating activity of kojic acid in mice. Archives of Toxicology, 80, 299–304. DOI: 10.1007/s00204-005-0034-4. http://dx.doi.org/10.1007/s00204-005-0034-410.1007/s00204-005-0034-4Suche in Google Scholar

[56] Mutschler, J., Rausis, T., Bourgeois, J. M., Bastian, C., Zufferey, D., Mohrenz, I. V., & Fischer, F. (2009). Ionic liquidcoated immobilized lipase for the synthesis of methylglucose fatty acid esters. Green Chemistry, 11, 1793–1800. DOI: 10.1039/b916016g. http://dx.doi.org/10.1039/b916016g10.1039/b916016gSuche in Google Scholar

[57] Nagai, S., & Izumi, T. (1981). U.S. Patent No. 4,278,656. Washington, DC, USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[58] Nakagawa, M., Kawai, K., & Kawai, K. (1995). Contact allergy to kojic acid in skin care products. Contact Dermatitis, 32, 9–13. DOI: 10.1111/j.1600-0536.1995.tb00832.x. http://dx.doi.org/10.1111/j.1600-0536.1995.tb00832.x10.1111/j.1600-0536.1995.tb00832.xSuche in Google Scholar

[59] Nakajima, N., Ishihara, K., & Hamada, H. (2001). Functional glucosylation of kojic acid and daidzein with the eucalypus membrane-associated UDP-glucosyltransferase reaction system. Journal of Bioscience and Bioengineering, 92, 469–471. DOI: 10.1016/s1389-1723(01)80298-x. 10.1016/S1389-1723(01)80298-XSuche in Google Scholar

[60] Nawarak, J., Liu, R. H., Kao, S. H., Liao, H. H., Sinchaikul, S., Chen, S. T., & Cheng, S. L. (2008). Proteomics analysis of kojic acid treated A375 human malignant melanoma cells. Journal of Proteome Research, 7, 3737–3746. DOI: 10.1021/pr7008737. http://dx.doi.org/10.1021/pr700873710.1021/pr7008737Suche in Google Scholar

[61] Nishimura, T., Kometani, T., Takii, H., Terada, Y., & Okada, S. (1994). Acceptor specificity in the glucosylation reaction of Bacillus subtilis X-23 α-amylase towards various phenolic compounds and the structure of kojic acid glucoside. Journal of Fermentation and Bioengineering, 78, 37–41. DOI: 10.1016/0922-338x(94)90175-9. http://dx.doi.org/10.1016/0922-338X(94)90175-910.1016/0922-338X(94)90175-9Suche in Google Scholar

[62] Nohynek, G. J., Kirkland, D., Marzin, D., Toutain, H., Leclerc-Ribaud, C., & Jinnai, H. (2004). An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one]. Food Chemistry and Toxicology, 42, 93–105. DOI: 10.1016/j.fct.2003.08.008. http://dx.doi.org/10.1016/j.fct.2003.08.00810.1016/j.fct.2003.08.008Suche in Google Scholar PubMed

[63] Radzi, S.M., Basri, M., Salleh, A. B., Ariff, A., Mohammad, R., Abdul-Rahman, M. B., & Abdul-Rahman, R. N. Z. R. (2006). Optimisation study of large-scale enzymatic synthesis of oleyl oleate, a liquid wax ester, by response surface methodology. Journal of Chemical Technology and Biotechnology, 81, 374–380. DOI: 10.1002/jctb.1404. http://dx.doi.org/10.1002/jctb.140410.1002/jctb.1404Suche in Google Scholar

[64] Radzi, S. M., Mustafa, W. A. F., Othman, S. S., & Noor, H. M. (2011). Green synthesis of butyl acetate, a pineapple flavour via lipase-catalyzed reaction. World Academy of Science, Engineering and Technology, 59, 677–680. Suche in Google Scholar

[65] Rahman, N. K., Kamaruddin, A. H., & Uzir, M. H. (2011). Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies. Bioprocess and Biosystems Engineering, 34, 687–699. DOI: 10.1007/s00449-011-0518-y. http://dx.doi.org/10.1007/s00449-011-0518-y10.1007/s00449-011-0518-ySuche in Google Scholar PubMed

[66] Rajendran, A., Palanisamy, A., & Thangavelu, V. (2009). Lipase catalyzed ester synthesis for food processing industries. Brazilian Archives of Biology and Technology, 52, 207–219. DOI: 10.1590/s1516-89132009000100026. http://dx.doi.org/10.1590/S1516-8913200900010002610.1590/S1516-89132009000100026Suche in Google Scholar

[67] Raku, T., & Tokiwa, Y. (2003). Regioselective synthesis of kojic acid esters by Bacillus subtilis protease. Biotechnology Letters, 25, 969–974. DOI: 10.1023/a:1024088303960. http://dx.doi.org/10.1023/A:102408830396010.1023/A:1024088303960Suche in Google Scholar

[68] Rho, H. S., Baek, H. S., You, J. W., Kim, S. J., Lee, J. Y., Kim, D. H., & Chang, I. S. (2007). New 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one derivatives has both tyrosinase inhibitory and antioxidant properties. Bulletin of the Korean Chemical Society, 28, 471–473. DOI: 10.5012/bkcs.2007.28.3.471. http://dx.doi.org/10.5012/bkcs.2007.28.3.47110.5012/bkcs.2007.28.3.471Suche in Google Scholar

[69] Rho, H. S., Ahn, S. M., Yoo, D. S., Kim, M. K., Cho, D. H., & Cho, J. Y. (2010a). Kojyl thioether derivatives having both tyrosinase inhibitory and anti-inflammatory properties. Bioorganic & Medicinal Chemistry Letters, 20, 6569–6571. DOI: 10.1016/j.bmcl.2010.09.042. http://dx.doi.org/10.1016/j.bmcl.2010.09.04210.1016/j.bmcl.2010.09.042Suche in Google Scholar PubMed

[70] Rho, H. S., Yoo, D. S., Ahn, S. M., Kim, M. K., Cho, D. H., & Cho, J. Y. (2010b). Inhibitory activities of kojyl thioether derivatives against nitric oxide production induced by lipopolysaccharide. Bulletin of the Korean Chemical Society, 31, 3463–3466. DOI: 10.5012/bkcs.2010.31.11.3463. http://dx.doi.org/10.5012/bkcs.2010.31.11.346310.5012/bkcs.2010.31.11.3463Suche in Google Scholar

[71] Rho, H. S., Goh, M. I., Lee, J. K., Ahn, S.M., Yeon, J. H., Yoo, D. S., Kim, D. H., Kim, H. G., & Cho, J. Y. (2011). Ester derivatives of kojic acid and polyphenols containing adamantane moiety with tyrosinase inhibitory and anti-inflammatory properties. Bulletin of the Korean Chemical Society, 32, 1411–1414. DOI: 10.5012/bkcs.2011.32.4.1411. http://dx.doi.org/10.5012/bkcs.2011.32.4.141110.5012/bkcs.2011.32.4.1411Suche in Google Scholar

[72] Rodrigues, A. P. D., Carvalho, A. S. C., Santos, A. S., Alves, C. N., do Nascimento, J. L. M., & Silva, E. O. (2011). Kojic acid, a secondary metabolite from Aspergillus sp., acts as an inducer of macrophage activation. Cell Biology International, 35, 335–343. DOI: 10.1042/cbi20100083. http://dx.doi.org/10.1042/CBI2010008310.1042/CBI20100083Suche in Google Scholar PubMed

[73] Salis, A., Solinas, V., & Monduzzi, M. (2003). Wax esters synthesis from heavy fraction of sheep milk fat and cetyl alcohol by immobilised lipases. Journal of Molecular Catalysis B: Enzymatic, 21, 167–174. DOI: 10.1016/s1381-1177 (02)00124-8. http://dx.doi.org/10.1016/S1381-1177(02)00124-810.1016/S1381-1177(02)00124-8Suche in Google Scholar

[74] Saponjić, S., Knežević-Jugović, Z. D., Bezbradica, D. I., Zuza, M. G., Saied, O. A., Bosković-Vragolović, N., & Mijin, D. Z. (2010). Use of Candida rugosa lipase immobilized on sepabeads for the amyl caprylate synthesis: Batch and fluidized bed reactor study. Electronic Journal of Biotechnology, 13, 1–15. DOI: 10.2225/vol13-issue6-fulltext-8. 10.2225/vol13-issue6-fulltext-8Suche in Google Scholar

[75] Sengupta, A., Pal, M., SilRoy, S., & Ghosh, M. (2010). Comparative study of sterol ester synthesis using Thermomyces lanuginosus lipase in stirred tank and packed-bed bioreactors. Journal of American Oil Chemists’ Society, 87, 1019–1025. DOI: 10.1007/s11746-010-1587-9. http://dx.doi.org/10.1007/s11746-010-1587-910.1007/s11746-010-1587-9Suche in Google Scholar

[76] Smith, C. N., & Lindsay, C. D. (2001). Kojic acid reduces the cytotoxic effects of sulfur mustard on cultures containing human melanoma cells in vitro. Journal of Applied Toxicology, 21, 435–440. DOI: 10.1002/jat.777. http://dx.doi.org/10.1002/jat.77710.1002/jat.777Suche in Google Scholar

[77] Soledad de Castro, M., Domínguez, P., & Sinisterra, J. V. (2000). Enzymatic amidation and alkoxycarbonylation of amines using native and immobilised lipases with different origins: a comparative study. Tetrahedron, 56, 1387–1391. DOI: 10.1016/s0040-4020(00)00014-4. http://dx.doi.org/10.1016/S0040-4020(00)00014-410.1016/S0040-4020(00)00014-4Suche in Google Scholar

[78] Stamatis, H., Xenakis, A., Bornscheuer, U., Scheper, T., Menge, U., & Kolisis, F. N. (1993) Pseudomonas cepacia lipase: Esterification reactions in AOT microemulsion systems. Biotechnology Letters, 15, 703–708. DOI: 10.1007/bf01080143. http://dx.doi.org/10.1007/BF0108014310.1007/BF01080143Suche in Google Scholar

[79] Stenson, A. C., & Cioffi, E. A. (2007). Speciation of M+3 — hydroxypyrone chelation complexes by electrospray ionization ion trap and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 2594–2600. DOI: 10.1002/rcm.3131. http://dx.doi.org/10.1002/rcm.313110.1002/rcm.3131Suche in Google Scholar

[80] Streffer, K., Kaatz, H., Bauer, C. G., Makower, A., Schulmeister, T., Scheller, F. W., Peter, M. G., & Wollenberger, U. (1998). Application of a sensitive catechol detector for determination of tyrosinase inhibitors. Analytica Chimica Acta, 362, 81–90. DOI: 10.1016/s0003-2670(97)00690-9. http://dx.doi.org/10.1016/S0003-2670(97)00690-910.1016/S0003-2670(97)00690-9Suche in Google Scholar

[81] Sudhir, P. R., Wu, H. F., & Zhou, Z. C. (2005). Probing the interaction of kojic acid antibiotics with iron(III) chloride by using electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 209–212. DOI: 10.1002/rcm.1773. http://dx.doi.org/10.1002/rcm.177310.1002/rcm.1773Suche in Google Scholar PubMed

[82] Syamsul, K. M. W., Salina, M. R., Siti, S. O., Hanina, M. N., Basyaruddin, M. A. R., & Jusoff, K. (2010). Green synthesis of lauryl palmitate via lipase-catalyzed reaction. World Applied Sciences Journal, 11, 401–407. Suche in Google Scholar

[83] Tai, H. P., & Brunner, G. (2009). Sugar fatty acid ester synthesis in high-pressure acetone-CO2 system. Journal of Supercritical Fluids, 48, 36–40. DOI: 10.1016/j.supflu.2008.09.009. http://dx.doi.org/10.1016/j.supflu.2008.09.00910.1016/j.supflu.2008.09.009Suche in Google Scholar

[84] Tamura, T., Mitsumori, K., Totsuka, Y., Wakabayashi, K., Kido, R., Kasai, H., Nasu, M., & Hirose, M. (2006). Absence of in vivo genotoxic potential and tumor initiation activity of kojic acid in the rat thyroid. Toxicology, 222, 213–224. DOI: 10.1016/j.tox.2006.02.023. http://dx.doi.org/10.1016/j.tox.2006.02.02310.1016/j.tox.2006.02.023Suche in Google Scholar

[85] Tan, T., Chen, B. Q., & Ye, H. (2006). Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochemical Engineering Journal, 29, 41–45. DOI: 10.1016/j.bej.2005.02.033. http://dx.doi.org/10.1016/j.bej.2005.02.03310.1016/j.bej.2005.02.033Suche in Google Scholar

[86] Terabayashi, Y., Sano, M., Yamane, N., Marui, J., Tamano, K., Sagara, J., Dohmoto, M., Oda, K., Ohshima, E., Tachibana, K., Higa, Y., Ohashi, S., Koike, H., & Machida, M. (2010). Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genetics and Biology, 47, 953–961. DOI: 10.1016/j.fgb.2010.08.014. http://dx.doi.org/10.1016/j.fgb.2010.08.01410.1016/j.fgb.2010.08.014Suche in Google Scholar

[87] Tokiwa, Y., Totani, T., Shimikawa, H., & Raku, T. (2003). Japan Patent No. 155,283. Tokyo, Japan: Japan Patent Office. Suche in Google Scholar

[88] Törnvall, U., Orellana-Coca, R., Hatti-Kaul, R., & Adlercreutz, D. (2007). Stability of immobilized Candida antarctica lipase B during chemo-enzymatic epoxidation of fatty acids. Enzyme and Microbial Technology, 40, 447–451. DOI: 10.1016/j.enzmictec.2006.07.019. http://dx.doi.org/10.1016/j.enzmictec.2006.07.01910.1016/j.enzmictec.2006.07.019Suche in Google Scholar

[89] Wan, H. M., Chen, C. C., Giridhar, R., Chang, T. S., & Wu, W. T. (2005). Repeated-batch production of kojic acid in a cellretention fermenter using Aspergillus oryzae M3B9. Journal of Industrial Microbiology and Biotechnology, 32, 227–233. DOI: 10.1007/s10295-005-0230-5. http://dx.doi.org/10.1007/s10295-005-0230-510.1007/s10295-005-0230-5Suche in Google Scholar

[90] Wei, C. I., Huang, T. S., Fernando, S. Y., & Chung, K. T. (1991). Mutagenicity studies of kojic acid. Toxicology Letters, 59, 213–220. DOI: 10.1016/0378-4274(91)90074-g. http://dx.doi.org/10.1016/0378-4274(91)90074-G10.1016/0378-4274(91)90074-GSuche in Google Scholar

[91] Whittemore, J., & Neis, R. (1998). U.S. Patent No. 5,824,327. Washington, DC, USA: U.S. Patent and Trademark office. Suche in Google Scholar

[92] Yamamoto, S., Nakanishi, K., & Hassan, M. A. (1997). Chromatographic separation of galactosylkojic acid. Journal of Fermentation and Bioengineering, 84, 82–85. DOI: 10.1016/s0922-338x(97)82791-2. http://dx.doi.org/10.1016/S0922-338X(97)82791-210.1016/S0922-338X(97)82791-2Suche in Google Scholar

[93] Yee, L. N., Akoh, C. C., & Phillips, R. S. (1997). Lipase PS-catalyzed transesterification of citronellyl butyrate and geranyl caproate: Effect of reaction parameters. Journal of the American Oil Chemists’ Society, 74, 255–260. DOI: 10.1007/s11746-997-0132-y. http://dx.doi.org/10.1007/s11746-997-0132-y10.1007/s11746-997-0132-ySuche in Google Scholar

[94] Yoon, I. H., Lee, Y. H., Park, C. W., Ji, H. J., & Lee, Y. S. (2010). Synthesis of dimers of (4-oxo-4H-pyran-2-yl)acrylic acid as tyrosinase inhibitors. Bulletin of the Korean Chemical Society, 31, 2036–2038. DOI: 10.5012/bkcs.2010.31.7.2036. http://dx.doi.org/10.5012/bkcs.2010.31.7.203610.5012/bkcs.2010.31.7.2036Suche in Google Scholar

[95] Zhang, J., & Xu, J. (1995). Oleyl oleate synthesis by immobilized lipase from Candida sp. 1619. Chinese Journal of Biotechnology, 11, 243–251. Suche in Google Scholar

[96] Zheng, Q. (2012). Research on production method of sugar alcohol based on enzyme method synthesis. International Proceedings of Computer Science and Information Technology, 25, 162–166. Suche in Google Scholar

[97] Zong, M. H., Wu, H., & Tan, Z. Y. (2008). Substantially enhancing enzymatic regioselective acylation of 1-β-d-arabinofuranosylcytosine with vinyl caprylate by using a co-solvent mixture of hexane and pyridine. Chemical Engineering Journal, 144, 75–78. DOI: 10.1016/j.cej.2008.05.010. http://dx.doi.org/10.1016/j.cej.2008.05.01010.1016/j.cej.2008.05.010Suche in Google Scholar

[98] Zoumpanioti, M., Merianou, E., Karandreas, T., Stamatis, H., & Xenakis, A. (2010). Esterification of phenolic acids catalyzed by lipases immobilized in organogels. Biotechnology Letters, 32, 1457–1462. DOI: 10.1007/s10529-010-0305-x. http://dx.doi.org/10.1007/s10529-010-0305-x10.1007/s10529-010-0305-xSuche in Google Scholar PubMed

Published Online: 2013-3-16
Published in Print: 2013-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0336-6/pdf
Button zum nach oben scrollen