Abstract
The structure of styryl dye, 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride (I), was investigated using methods such as UV-VIS, fluorescence spectroscopy, and NMR (1H, 13C, APT, HMQC, COSY) and also by examining its electrochemical properties. A study of the acid-base properties revealed the existence of three different forms of the dye. The mechanisms of protolysis and hydrolysis are discussed. The reagent exists in a reactive single-charged form I + over a wide range of acidity (pH 4–11). The optimum analytical wavelength of the singlecharged form is 550 nm, where the molar absorptivity is 5.51 × 104 L mol−1 cm−1. The values of the optimum analytical wavelength and molar absorptivity of the protolysed and hydrolysed forms are: λ max(I-H2+) = 380 nm, ɛ(I-H2+) = 2.01 × 104 L mol−1 cm−1; λ max(I-OH) = 320 nm, ɛ(I-OH) = 1.12 × 104 L mol−1 cm−1. A theoretical study of the spectral and chemical properties of I was carried out by performing quantum chemical calculations.
[1] Balanda, A. O., Volkova, K. D., Kovalska, V. B., Losytskyy, M. Y., Tokar, V. P., Prokopets, V. M., & Yarmoluk, S. M. (2007). Synthesis and spectral-luminescent studies of novel 4-oxo-4,6,7,8-tetrahydropyrrolo[1,2-a]thieno[2,3-d]pyrimidinium styryls as fluorescent dyes for biomolecules detection. Dyes and Pigments, 75, 25–31. DOI: 10.1016/j.dyepig.2006.05.010. http://dx.doi.org/10.1016/j.dyepig.2006.05.01010.1016/j.dyepig.2006.05.010Search in Google Scholar
[2] Bazeľ, Y. R., Studenyak, Y. I., & Tolmachev, A. A. (1997). Solvent extraction of thiocyanate complexes of elements with basic cyanine dyes from aqueous-organic solutions: Extractionphotometric determination of palladium(II). Journal of Analytical Chemistry, 52, 536–541. Search in Google Scholar
[3] Billes, F., Szabó, A., & Studenyak, Y. (2011). Vibrational spectroscopic study on 2-[2-(4-dipropylamino-phenyl)-vinyl]-1,3,3-trimethyl-3H-indolium chloride. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78, 967–980. DOI: 10.1016/j.saa.2010.12.007. http://dx.doi.org/10.1016/j.saa.2010.12.00710.1016/j.saa.2010.12.007Search in Google Scholar
[4] Bricks, J. L., Slominskii, J. L., Kudinova, M. A., Tolmachev, A. I., Rurack, K., Resch-Genger, U., & Rettig, W. (2000). Syntheses and photophysical properties of a series of cationsensitive polymethine and styryl dyes. Journal of Photochemistry and Photobiology A: Chemistry, 132, 193–208. DOI: 10.1016/s1010-6030(00)00208-2. http://dx.doi.org/10.1016/S1010-6030(00)00208-210.1016/S1010-6030(00)00208-2Search in Google Scholar
[5] Deligeorgiev, T., Vasilev, A., Kaloyanova, S., & Vaquero, J. J. (2010). Styryl dyes — synthesis and applications during the last 15 years. Coloration Technology, 126, 55–80. DOI: 10.1111/j.1478-4408.2010.00235.x. http://dx.doi.org/10.1111/j.1478-4408.2010.00235.x10.1111/j.1478-4408.2010.00235.xSearch in Google Scholar
[6] Fedyunyayeva, I. A., Klochko, O. P., Semenova, O. M., Khabuseva, S. U., Povrozin, Y. A., Sokolyk, O. O., Stepanenko, O. Y., Terpetschnig, E. A., & Patsenker, L. D. (2011). The synthesis, structure and spectral properties of new long-wavelength benzodipyrroleninium-based bis-styryl dyes. Dyes and Pigments, 90, 201–210. DOI: 10.1016/j.dyepig.2010.12.004. http://dx.doi.org/10.1016/j.dyepig.2010.12.00410.1016/j.dyepig.2010.12.004Search in Google Scholar
[7] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J. A. (2004). Gaussian 03, Revision C.02 [computer software]. Wallingford, CT, USA: Gaussian, Inc. Search in Google Scholar
[8] Gawinecki, R., & Trzebiatowska, K. (2000). The effect of the amino group on the spectral properties of substituted styrylpyridinium salts. Dyes and Pigments, 45, 103–107. DOI: 10.1016/s0143-7208(00)00012-7. http://dx.doi.org/10.1016/S0143-7208(00)00012-710.1016/S0143-7208(00)00012-7Search in Google Scholar
[9] Horiguchi, E., Shirai, K., Matsuoka, M., & Matsui, M. (2002). Syntheses and spectral properties of non-planar bis(styryl)diazepine fluorescent dyes and related derivatives. Dyes and Pigments, 53, 45–55. DOI: 10.1016/s0143-7208(01)00099-7. http://dx.doi.org/10.1016/S0143-7208(01)00099-710.1016/S0143-7208(01)00099-7Search in Google Scholar
[10] Kormosh, Z., Bazel, Y., & Tolmachov, A. (2002). The state and chemical-analytical properties of certain polymethine dyes in aqueous solutions. Acta Chimica Slovenica, 49, 795–804. Search in Google Scholar
[11] Kovalska, V. B., Kocheshev, I. O., Kryvorotenko, D. V., Balanda, A., & Yarmoluk, S. M. (2005). Studies on the spectralluminescent properties of the novel homodimer styryl dyes in complexes with DNA. Journal of Fluorescence, 15, 215–219. DOI: 10.1007/s10895-005-2620-5. http://dx.doi.org/10.1007/s10895-005-2620-510.1007/s10895-005-2620-5Search in Google Scholar PubMed
[12] Krieg, R., Eitner, A., Günther, W., Schürer, C., Lindenau, J., & Halbhuber, K. J. (2008). N,N-Dialkylaminostyryl dyes: specific and highly fluorescent substrates of peroxidase and their application in histochemistry. Journal of Molecular Histology, 39, 169–191. DOI: 10.1007/s10735-007-9150-1. http://dx.doi.org/10.1007/s10735-007-9150-110.1007/s10735-007-9150-1Search in Google Scholar PubMed
[13] Lešková, M., Sklenářová, H., Bazel, Y., Chocholouš, P., Solich, P., & Andruch, V. (2012). A non-extractive sequential injection method for determination of molybdenum. Talanta, 96, 185–189. DOI: 10.1016/j.talanta.2012.01.040. http://dx.doi.org/10.1016/j.talanta.2012.01.04010.1016/j.talanta.2012.01.040Search in Google Scholar PubMed
[14] Li, Q., Lin, G. L., Peng, B. X., & Li, Z. X. (1998). Synthesis, characterization and photographic properties of some new styryl cyanine dyes. Dyes and Pigments, 38, 211–218. DOI: 10.1016/s0143-7208(97)00088-0. http://dx.doi.org/10.1016/S0143-7208(97)00088-010.1016/S0143-7208(97)00088-0Search in Google Scholar
[15] Li, Q., Lee, J. S., Ha, C., Park, C. B., Yang, G., Gan, W. B., & Chang, Y. T. (2004). Solid-phase synthesis of styryl dyes and their application as amyloid sensors. Angewandte Chemie International Edition, 43, 6331–6335. DOI: 10.1002/anie.200461600. http://dx.doi.org/10.1002/anie.20046160010.1002/anie.200461600Search in Google Scholar
[16] Mitewa, M., Mateeva, N., Antonov, L., & Deligeorgiev, T. (1995). Spectrophotometric investigation of the complex formation of aza-15-crown-5 containing styryl dyes with Ba2+ and Ca2+ cations. Dyes and Pigments, 27, 219–225. DOI: 10.1016/0143-7208(94)00060-f. http://dx.doi.org/10.1016/0143-7208(94)00060-F10.1016/0143-7208(94)00060-FSearch in Google Scholar
[17] Rangnekar, D. W., & Sonawane, N. D. (2000). Synthesis and application of 2-styryl-6(7)-bromothiazolo[4,5-b]quinoxaline based fluorescent dye chromophores: Part 2. Dyes and Pigments, 45, 87–96. DOI: 10.1016/s0143-7208(00)00006-1. http://dx.doi.org/10.1016/S0143-7208(00)00006-110.1016/S0143-7208(00)00006-1Search in Google Scholar
[18] Shkumbatiuk, R., Bazel, Y. R., Andruch, V., & Török, M. (2005). Investigation of 2-[(E)-2-(4-diethylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium as a new highly sensitive reagent for the spectrophotometric determination of nitrophenols. Analytical and Bioanalytical Chemistry, 382, 1431–1437. DOI: 10.1007/s00216-005-3279-0. http://dx.doi.org/10.1007/s00216-005-3279-010.1007/s00216-005-3279-0Search in Google Scholar
[19] Serbin, R., Bazel, Y. R., Torok, M., Havel, J., Balogh, I. S., Kormosh, Z. O, Holéczyová, G., & Andruch, V. (2009). Investigation of the reaction of gold(III) with 2-[2-(4-dimethylaminophenyl)-vinyl]-1,3,3-trimethyl-3H-indolium. Application for determination of gold. Journal of the Chinese Chemical Society, 56, 1168–1174. Search in Google Scholar
[20] Kim, S. H., Cui, J. Z., Park, J. Y., Han, E. M., & Park, S. M. (2003). Light emitting properties of diheteryl-substituted styryl dyes. Dyes and Pigments, 59, 245–250. DOI: 10.1016/s0143-7208(03)00107-4. http://dx.doi.org/10.1016/S0143-7208(03)00107-410.1016/S0143-7208(03)00107-4Search in Google Scholar
[21] Škrlíková, J., Andruch, V., Sklenářová, H., Chocholouš, P., Solich, P., & Balogh, I. S. (2010). A novel dual-valve sequential injection manifold (DV-SIA) for automated liquid-liquid extraction. Application for the determination of picric acid. Analytica Chimica Acta, 666, 55–61. DOI: 10.1016/j.aca.2010.03.039. http://dx.doi.org/10.1016/j.aca.2010.03.03910.1016/j.aca.2010.03.039Search in Google Scholar PubMed
[22] Škrlíková, J., Andruch, V., Sklenářová, H., Solich, P., Balogh, I. S., & Billes, F. (2011). A novel non-extractive sequential injection procedure for determination of cadmium. Analytical Letters, 44, 431–445. DOI: 10.1080/00032719.2010.500783. http://dx.doi.org/10.1080/00032719.2010.50078310.1080/00032719.2010.500783Search in Google Scholar
[23] Tokar, V. P., Losytskyy, M. Y., Kovalska, V. B., Kryvorotenko, D. V., Balanda, A. O., Prokopets, V. M., Galak, M. P., Dmytruk, I. M., Yashchuk, V. M, & Yarmoluk, S. M. (2006). Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation. Journal of Fluorescence, 16, 783–791. DOI: 10.1007/s10895-006-0127-3. http://dx.doi.org/10.1007/s10895-006-0127-310.1007/s10895-006-0127-3Search in Google Scholar PubMed
[24] Vasilev, A., Deligeorgiev, T., Gadjev, N., Kaloyanova, S., Vaquero, J. J., Alvarez-Builla, J., & Baeza, A. G. (2008). Novel environmentally benign procedures for the synthesis of styryl dyes. Dyes and Pigments, 77, 550–555. DOI: 10.1016/j.dyepig.2007.08.004. http://dx.doi.org/10.1016/j.dyepig.2007.08.00410.1016/j.dyepig.2007.08.004Search in Google Scholar
[25] Wang, L. Y., Chen, Q. W., Zhai, G. H., Wen, Z. Y., & Zhang, Z. X. (2007). Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus. Dyes and Pigments, 72, 357–362. DOI: 10.1016/j.dyepig.2005.09.017. http://dx.doi.org/10.1016/j.dyepig.2005.09.01710.1016/j.dyepig.2005.09.017Search in Google Scholar
[26] Wang, M., Gao, M., Miller, K. D., Sledge, G. W., Hutchins, G. D., & Zheng, Q. H. (2009). Simple synthesis of carbon-11 labeled styryl dyes as new potential PET RNA-specific, living cell imaging probes. European Journal of Medicinal Chemistry, 44, 2300–2306. DOI: 10.1016/j.ejmech.2008.02.033. http://dx.doi.org/10.1016/j.ejmech.2008.02.03310.1016/j.ejmech.2008.02.033Search in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects