Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
-
Klaudia Jakusová
, Martin Gáplovský
, Jana Donovalová , Marek Cigáň , Henrieta Stankovičová , Robert Sokolík , Jan Gašpar und Anton Gáplovský
Abstract
In this work, the effect of inter- and intramolecular interactions of reactants and products, reactants concentration as well as the solvent effect on the ratio of E and Z isomers of isatinphenylsemicarbazones in the reaction mixture is examined. Theoretical calculations proved that Z isomers are more stable than E isomers. Experimental results confirmed the noncovalent intermolecular donor-acceptor interactions of the reactants in the reaction mixture at concentrations above 0.1 mol L−1. The E/Z isomer ratio of isatin-3-(4-phenyl)semicarbazone (I) and N-methylisatin-3-(4-phenyl)semicarbazone (II) depends on the initial concentrations of 3-amino-1-phenylurea (phenylsemicarbazide; V) and 1H-indole-2,3-dione (isatin; III), or 3-methylindol-2,3(1H)-dion (3-methylisatin; IV), respectively. Both isomers exhibit high thermal stability. Thermal E-Z isomerization takes place at temperatures above 70°C in N,N-dimethylformamide.
[1] Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C., & Padhye, S. (2005). Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. Journal of Inorganic Biochemystry, 99, 1526–1531. DOI: 10.1016/j.jinorgbio.2005.04.012. http://dx.doi.org/10.1016/j.jinorgbio.2005.04.01210.1016/j.jinorgbio.2005.04.012Suche in Google Scholar
[2] Alarcón, S. H., Olivieri, A. C., Labadie, G. R., Cravero, R. M., & González-Sierra, M. (1995). Tautomerism of representative aromatic α-hydroxy carbaldehyde anils as studied by spectroscopic methods and AM1 calculations. Synthesis of 10-hydroxyphenanthrene-9-carbaldehyde. Tetrahedron, 51, 4619–4626. DOI: 10.1016/0040-4020(95)00002-p. http://dx.doi.org/10.1016/0040-4020(95)00002-P10.1016/0040-4020(95)00002-PSuche in Google Scholar
[3] Borsche, W., & Meyer, R. (1921). Über Desoxy-indigo. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 54, 2854–2856. DOI: 10.1002/cber.19210541037. http://dx.doi.org/10.1002/cber.1921054103710.1002/cber.19210541037Suche in Google Scholar
[4] Brancato, G., Coutrot, F., Leigh, D. A., Murphy, A., Wong, J. K. Y., & Zerbetto, F. (2002). From reactants to products via simple hydrogen-bonding networks: Information transmission in chemical reactions. PNAS, 99, 4967–4971. DOI: 10.1073/pnas.072695799. http://dx.doi.org/10.1073/pnas.07269579910.1073/pnas.072695799Suche in Google Scholar
[5] Cerchiaro, G., & da Costa Ferreira, A. M. (2006). Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents. Journal of the Brazilian Chemical Society, 17, 1473–1485. DOI: 10.1590/s0103-50532006000800003. http://dx.doi.org/10.1590/S0103-5053200600080000310.1590/S0103-50532006000800003Suche in Google Scholar
[6] Chai, H., Liu, G., Liu, L., Jia, D., Guo, Z., & Lang, J. (2005). Crystal structure and spectroscopic study on photochromism of 1,3-diphenyl-4-(4′-fluoro)benzal-5-pyrazolone N(4)-phenyl semicarbazone. Journal of Molecular Structure, 752, 124–129. DOI: 10.1016/j.molstruc.2005.04.047. http://dx.doi.org/10.1016/j.molstruc.2005.04.04710.1016/j.molstruc.2005.04.047Suche in Google Scholar
[7] Cubero, E., Orozco, M., Hobza, P., & Luque, J. F. (1999). Hydrogen bond versus anti-hydrogen bond: A comparative analysis based on the electron density topology. Journal of Physical Chemistry A, 103, 6394–6401. DOI: 10.1021/jp990258f. http://dx.doi.org/10.1021/jp990258f10.1021/jp990258fSuche in Google Scholar
[8] Dimmock, J. R., Vashishtha, S. C., & Stables, J. P. (2000). Urelylene anticonvulants and related compounds. Pharmazie, 55, 490–494. Suche in Google Scholar
[9] Epshtein, L. M. (1979). Hydrogen bonds and the reactivity of organic compounds in proton transfer and nucleophilic substitution reactions. Russian Chemical Reviews, 48, 854–867. DOI: 10.1070/rc1979v048n09abeh002417. http://dx.doi.org/10.1070/RC1979v048n09ABEH00241710.1070/RC1979v048n09ABEH002417Suche in Google Scholar
[10] Falkovskaia, E., Pivovarenko, V. G., & del Valle, J. C. (2002). Observation of a single proton transfer fluorescence in a biaxially symmetric dihydroxy diflavonol. Chemical Physics Letters, 352, 415–420. DOI: 10.1016/s0009-2614(01)01490-7. http://dx.doi.org/10.1016/S0009-2614(01)01490-710.1016/S0009-2614(01)01490-7Suche in Google Scholar
[11] Farghaly, M., Abbel-Wahab, B. F., & Ahmed, E. M. (2009). Synthesis, antiviral and antimicrobial screening of some new 2-oxoindoline derivatives. Chemistry of Heterocyclic Compounds, 45, 539–544. DOI: 10.1155/2008/362105. http://dx.doi.org/10.1007/s10593-009-0301-z10.1155/2008/362105Suche in Google Scholar PubMed PubMed Central
[12] Hadjoudis, E., Dziembowska, T., & Rozwadowski, Z. (1999). Photoactivation of the thermochromic solid di-anil of 2-hydroxy-5-methyl-isophthalaldehyde in β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 128, 97–99. DOI: 10.1016/s1010-6030(99)00126-4. http://dx.doi.org/10.1016/S1010-6030(99)00126-410.1016/S1010-6030(99)00126-4Suche in Google Scholar
[13] Jafri, L., Ansari, F. L., Jamil, M., Kalsoom, S., Qureishi, S., & Mirza, B. (2012). Microwave-assisted synthesis and bioevaluation of some semicarbazones. Chemical Biology and Drug Design, 79, 1–10. DOI: 10.1111/j.1747-0285.2012.01360.x. http://dx.doi.org/10.1111/j.1747-0285.2012.01360.x10.1111/j.1747-0285.2012.01360.xSuche in Google Scholar
[14] Jia, C., Wu, B., Liang, J., Huang, X., & Yang, X. J. (2010). A colorimetric and ratiometric fluorescent chemosensor for fluoride based on proton transfer. Journal of Fluorescence, 20, 291–297. DOI: 10.1007/s10895-009-0553-0. http://dx.doi.org/10.1007/s10895-009-0553-010.1007/s10895-009-0553-0Suche in Google Scholar
[15] Kang, I. J., Wang, L. W., Hsu, T. A., Yueh, A., Lee, C. C., Lee, Y. C., Chao, Y. S., Shih, S. R., Chern, J. H., & Lee, C. Y. (2011). Isatin-β-thiosemicarbazones as potent herpes simplex virus inhibitors. Bioorganic & Medicinal Chemistry Letters, 21, 1948–1952. DOI: 10.1016/j.bmcl.2011.02.037. http://dx.doi.org/10.1016/j.bmcl.2011.02.03710.1016/j.bmcl.2011.02.037Suche in Google Scholar
[16] Kolehmainen, E., Ośmiałowski, B., Nissinen, M., Kauppinen, R., & Gawinecki, R. (2000). Substituent and temperature controlled tautomerism of 2-phenacylpyridine: the hydrogen bond as a configurational lock of (Z)-2-(2-hydroxy-2-phenylvinyl)pyridine. Journal of Chemical Society, Perkin Transactions 2, 2000, 2185–2191. DOI: 10.1039/b006879i. http://dx.doi.org/10.1039/b006879i10.1039/b006879iSuche in Google Scholar
[17] Levy, D. H. (1980). Laser spectroscopy of cold gas-phase molecules. Annual Review of Physical Chemistry, 31, 197–225. DOI: 10.1146/annurev.pc.31.100180.001213. http://dx.doi.org/10.1146/annurev.pc.31.100180.00121310.1146/annurev.pc.31.100180.001213Suche in Google Scholar
[18] Li, Q. S., & Fang, W. H. (2003). Theoretical studies on structures and reactivity of 8-hydroxyquinoline and its one-water complex in the ground and excited states. Chemical Physics Letters, 367, 637–644. DOI: 10.1016/s0009-2614(02)01791-8. http://dx.doi.org/10.1016/S0009-2614(02)01791-810.1016/S0009-2614(02)01791-8Suche in Google Scholar
[19] Mehata, M. S., Joshi, H. C., & Tripathi, H. B. (2002). Excited-state intermolecular proton transfer reaction of 6-hydroxyquinoline in protic polar medium. Chemical Physics Letters, 359, 314–320. DOI: 10.1016/s0009-2614(02)00716-9. http://dx.doi.org/10.1016/S0009-2614(02)00716-910.1016/S0009-2614(02)00716-9Suche in Google Scholar
[20] Otsubo, N., Okabe, C., Mori, H., Sakota, K., Amimoto, K., Kawato, T., & Sekiya, H. (2002). Excited-state intramolecular proton transfer in photochromic jet-cooled Nsalicylideneaniline. Journal of Photochemistry and Photobiology A: Chemistry, 154, 33–39. DOI: 10.1016/s1010-6030(02)00306-4. http://dx.doi.org/10.1016/S1010-6030(02)00306-410.1016/S1010-6030(02)00306-4Suche in Google Scholar
[21] Pal, M., Sharma, N. K., Priynka, P., & Jha, K. K. (2011). Synthetic and biological multiplicity of isatin: A review. Journal of Advanced Scientific Research, 2, 35–44. Suche in Google Scholar
[22] Pandeya, S. N., Yogeeswari, P., & Stables, J. P. (2000). Synthesis and anticonvulant activity of 4-bromophenyl substituted aryl semicarbazones. European Journal of Medicinal Chemistry, 35, 879–886. DOI: 10.1016/s0223-5234(00)01169-7. http://dx.doi.org/10.1016/S0223-5234(00)01169-710.1016/S0223-5234(00)01169-7Suche in Google Scholar
[23] Pandeya, S. N., Raja, A. S., & Stables, J. P. (2002). Synthesis of isatin semicarbazones as novel anticonvulsants — role of hydrogen bonding. Journal of Pharmacy and Pharmaceutical Sciences, 5, 266–271. Suche in Google Scholar
[24] Pandeya, S. N., Raja, A. S., & Nath, G. (2006). Synthesis and antimicrobial evaluation of some 4- or 6-chloroisatin derivatives. Indian Journal of Chemistry, 45B, 494–499. 10.1002/chin.200623110Suche in Google Scholar
[25] Sathisha, M. P., Revankar, V. K., & Pai, K. S. R. (2008). Synthesis, structure, electrochemistry, and spectral characterization of bis-isatin thiocarbohydrazone metal complexes and their antitumor activity against ehrlich ascites carcinoma in swiss albino mice. Metal-Based Drugs, 1, 1–11. DOI: 10.1155/2008/362105. http://dx.doi.org/10.1155/2008/36210510.1155/2008/362105Suche in Google Scholar
[26] Senthilkumar, L., Ghanty, T. K., & Ghosh, S. K. (2005). Electron density and energy decomposition analysis in hydrogenbonded complexes of azabenzenes with water, acetamide, and thioacetamide. Journal of Physical Chemistry A, 109, 7575–7582. DOI: 10.1021/jp052304j. http://dx.doi.org/10.1021/jp052304j10.1021/jp052304jSuche in Google Scholar
[27] Sonawane, A. E., Pawar, Y. A., Nagle, P. S., Mahulikar, P. P., & More, D. H. (2009). Synthesis of 1,4-benzothiazine compounds containing isatin hydrazone moiety as antimicrobial agent. Chinese Journal of Chemistry, 27, 2049–2054. DOI: 10.1002/cjoc.200990344. http://dx.doi.org/10.1002/cjoc.20099034410.1002/cjoc.200990344Suche in Google Scholar
[28] Sridhar, S. K., Saravanan, M., & Ramesh, A. (2001). Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives. European Journal of Medicinal Chemistry, 36, 615–625. DOI: 10.1016/s0223-5234(01)01255-7. http://dx.doi.org/10.1016/S0223-5234(01)01255-710.1016/S0223-5234(01)01255-7Suche in Google Scholar
[29] Verma, M., Pandeya, S. N., Singh, K. N., & Stables, J. P. (2004). Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharmaceutica, 54, 49–56. Suche in Google Scholar
[30] Verma, K., Pandeya, S. N., Singh, U. K., Gupta, S., Prashant, P., & Anurag Gautam, B. (2009). Synthesis and pharmacological activity of some substituted menthone semicarbazone and thiosemicarbazone derivatives. International Journal of Pharmaceutical Sciences and Nanotechnology, 1, 357–362. Suche in Google Scholar
[31] Wu, D. L., Liu, L., Liu, G. F., & Jia, D. Z. (2007). Theoretical studies on geometrical properties and photochromic mechanism of two photochromic compounds. Journal of Molecular Structure: THEOCHEM, 806, 197–203. DOI: 10.1016/j.theochem.2006.11.027. http://dx.doi.org/10.1016/j.theochem.2006.11.02710.1016/j.theochem.2006.11.027Suche in Google Scholar
[32] Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 120, 215–241. DOI: 10.1007/s00214-007-0310-x. 10.1007/s00214-007-0310-xSuche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Artikel in diesem Heft
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone