Abstract
2,2′-Diiodo-1,1′-binaphthalene undergoes a tandem Heck reaction with methyl acrylate to afford methyl 2-(7H-dibenzo[c,g]fluoren-7-ylidene)acetate. As a consequence, the target macrocyclic diazene with binaphthalene unit attached via acrylamide linker was prepared by the stepwise building of acrylamide at a binaphthalene moiety, including the Doebner modification of the Knoevenagel condensation, and completed by oxidative macrocyclisation of aniline end-groups. Despite being an equimolar mixture of monomer and dimer, it exhibited remarkable changes in CD spectra due to reversible (E/Z) isomerisation of N=N diazene bonds upon irradiation at 365/465 nm. Although the dimer isomerises from (E) to (Z) isomer 7.4 times faster than the monomer, the latter’s contribution to the change in ellipticity at 307 nm in the photostationary state is 2.4 times greater.
[1] Bandara, H. M. D., & Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chemical Society Reviews, 41, 1809–1825. DOI: 10.1039/c1cs15179g. http://dx.doi.org/10.1039/c1cs15179g10.1039/C1CS15179GSuche in Google Scholar
[2] Di Bari, L., Pescitelli, G., & Salvadori, P. (1999). Conformational study of 2,2′-homosubstituted 1,1′-binaphthyls by means of UV and CD spectroscopy. Journal of the American Chemical Society, 121, 7998–8004. DOI: 10.1021/ja990326b. http://dx.doi.org/10.1021/ja990326b10.1021/ja990326bSuche in Google Scholar
[3] Feringa, B. L., & Browne, W. R. (Eds.) (2011). Molecular switches (2nd ed., Vol. 1). Weinheim, Germany: Wiley-VCH. 10.1002/9783527634408Suche in Google Scholar
[4] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09, Revision A.02 [computer software]. Wallingford, CT, USA: Gaussian, Inc. Suche in Google Scholar
[5] Kawamoto, M., Aoki, T., & Wada, T. (2007). Light-driven twisting behaviour of chiral cyclic compounds. Chemical Communications, 2007, 930–932. DOI: 10.1039/b616320c. http://dx.doi.org/10.1039/b616320c10.1039/b616320cSuche in Google Scholar
[6] Kawamoto, M., Shiga, N., Takaishi, K., & Yamashita, T. (2010). Non-destructive erasable molecular switches and memory using light-driven twisting motions. Chemical Communications, 46, 8344–8346. DOI: 10.1039/c0cc02685a. http://dx.doi.org/10.1039/c0cc02685a10.1039/c0cc02685aSuche in Google Scholar
[7] Kina, A., Miki, H., Cho, Y. H., & Hayashi, T. (2004). Palladiumcatalyzed Heck and carbonylation reactions of a dinaphthaleneiodonium salt forming functionalized 2-iodo-1,1′-binaphthyls. Advanced Synthesis & Catalysis, 346, 1728–1732. DOI: 10.1002/adsc.200404202. http://dx.doi.org/10.1002/adsc.20040420210.1002/adsc.200404202Suche in Google Scholar
[8] Knoll, H. (2004). Photoisomerism of azobenzenes. In W. Horspool, & F. Lenci (Eds.), CRC handbook of organic photochemistry and photobiology (2nd ed., Chapter 89). Boca Raton, FL, USA: CRC Press. Suche in Google Scholar
[9] Krascsenicsová, K., Walla, P., Kasák, P., Uray, G., Kappe, C. O., & Putala, M. (2004). Stereoconservative Negishi arylation and alkynylation as an efficient approach to enantiopure 2,2′-diarylated 1,1′-binaphthyls. Chemical Communications, 2004, 2606–2607. DOI: 10.1039/b410185e. http://dx.doi.org/10.1039/b410185e10.1039/B410185ESuche in Google Scholar
[10] Mecca, T., Superchi, S., Giorgio, E., & Rosini, C. (2001). 1,1′-Binaphthylazepine-based ligands for asymmetric catalysis. Part 1: Preparation and characterization of some new aminoalcohols and diamines. Tetrahedron: Asymmetry, 12, 1225–1233. DOI: 10.1016/s0957-4166(01)00199-9. 10.1016/S0957-4166(01)00199-9Suche in Google Scholar
[11] Narasimhan, B., Belsare, D., Pharande, D., Mourya, V., & Dhake, A. (2004). Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry, 39, 827–834. DOI: 10.1016/j.ejmech.2004.06.013. http://dx.doi.org/10.1016/j.ejmech.2004.06.01310.1016/j.ejmech.2004.06.013Suche in Google Scholar
[12] Prashad, M., Liu, Y., Mak, X. Y., Har, D., Repič, O., & Blacklock, T. J. (2002). Double Heck reaction of bridged o,o′-dibromobiaryls with ethyl acrylate. Tetrahedron Letters, 43, 8559–8562. DOI: 10.1016/s0040-4039(02)02090-7. http://dx.doi.org/10.1016/S0040-4039(02)02090-710.1016/S0040-4039(02)02090-7Suche in Google Scholar
[13] Reuter, R., Hostettler, N., Neuburger, M., & Wegner, H. A. (2009). Synthesis and property studies of cyclotrisazobenzenes. European Journal of Organic Chemistry, 2009, 5647–5652. DOI: 10.1002/ejoc.200900861. http://dx.doi.org/10.1002/ejoc.20090086110.1002/ejoc.200900861Suche in Google Scholar
[14] Reuter, R., & Wegner, H. A. (2011a). Oligoazobenzenophanes-synthesis, photochemistry and properties. Chemical Communications, 47, 12267–12276. DOI: 10.1039/c1cc13773e. http://dx.doi.org/10.1039/c1cc13773e10.1039/c1cc13773eSuche in Google Scholar
[15] Reuter, R., & Wegner, H. A. (2011b). Synthesis and isomerization studies of cyclotrisazobiphenyl. Chemistry-A European Journal, 17, 2987–2995. DOI: 10.1002/chem.201002671. http://dx.doi.org/10.1002/chem.20100267110.1002/chem.201002671Suche in Google Scholar
[16] Shen, H. C., Tang, J. M., Chang, H. K., Yang, C. W., & Liu, R. S. (2005). Short and efficient synthesis of coronene derivatives via ruthenium-catalyzed benzannulation protocol. The Journal of Organic Chemistry, 70, 10113–10116. DOI: 10.1021/jo0512599. http://dx.doi.org/10.1021/jo051259910.1021/jo0512599Suche in Google Scholar
[17] Srinivasa, G. R., Abiraj, K., & Channe Gowda, D. (2003). The synthesis of azo compounds from nitro compounds using lead and triethylammonium formate. Tetrahedron Letters, 44, 5835–5837. DOI: 10.1016/s0040-4039(03)01411-4. http://dx.doi.org/10.1016/S0040-4039(03)01411-410.1016/S0040-4039(03)01411-4Suche in Google Scholar
[18] Takaishi, K., Kawamoto, M., Tsubaki, K., & Wada, T. (2009). Photoswitching of dextro/levo rotation with axially chiral binaphthyls linked to an azobenzene. The Journal of Organic Chemistry, 74, 5723–5726. DOI: 10.1021/jo901030s. http://dx.doi.org/10.1021/jo901030s10.1021/jo901030sSuche in Google Scholar PubMed
[19] Takaishi, K., & Kawamoto, M. (2011). Synthesis and conformation of substituted chiral binaphthyl-azobenzene cyclic dyads with chiroptical switching capabilities. Molecules, 16, 1603–1624. DOI: 10.3390/molecules16021603. http://dx.doi.org/10.3390/molecules1602160310.3390/molecules16021603Suche in Google Scholar PubMed PubMed Central
[20] Takaishi, K., Kawamoto, M., Tsubaki, K., Furuyama, T., Muranaka, A., & Uchiyama, M. (2011a). Helical chirality of azobenzenes induced by an intramolecular chiral axis and potential as chiroptical switches. Chemistry-A European Journal, 17, 1778–1782. DOI: 10.1002/chem.201003087. http://dx.doi.org/10.1002/chem.20100308710.1002/chem.201003087Suche in Google Scholar PubMed
[21] Takaishi, K., Muranaka, A., Kawamoto, M., & Uchiyama, M. (2011b). Planar chirality of twisted trans-azobenzene structure induced by chiral transfer from binaphthyls. The Journal of Organic Chemistry, 76, 7623–7628. DOI: 10.1021/jo201578z. http://dx.doi.org/10.1021/jo201578z10.1021/jo201578zSuche in Google Scholar PubMed
[22] Takaishi, K., Muranaka, A., Kawamoto, M., & Uchiyama, M. (2012). Photoinversion of cisoid/transoid binaphthyls. Organic Letters, 14, 276–279. DOI: 10.1021/ol203053q. http://dx.doi.org/10.1021/ol203053q10.1021/ol203053qSuche in Google Scholar PubMed
[23] Tomimasu, N., Kanaya, A., Takashima, Y., Yamaguchi, H., & Harada, A. (2009). Social self-sorting: Alternating supramolecular oligomer consisting of isomers. Journal of the American Chemical Society, 131, 12339–12343. DOI: 10.1021/ja903988c. http://dx.doi.org/10.1021/ja903988c10.1021/ja903988cSuche in Google Scholar PubMed
[24] Ziegler, C. B., Jr., & Heck, R. F. (1978). Palladium-catalyzed vinylic substitution with highly activated aryl halides. The Journal of Organic Chemistry, 43, 2941–2946. DOI: 10.1021/jo00409a001. http://dx.doi.org/10.1021/jo00409a00110.1021/jo00409a001Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Artikel in diesem Heft
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone