Home Life Sciences Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
Article
Licensed
Unlicensed Requires Authentication

Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems

  • Marek Bučko EMAIL logo , Danica Mislovičová , Jozef Nahálka , Alica Vikartovská , Jana Šefčovičová , Jaroslav Katrlík , Ján Tkáč , Peter Gemeiner , Igor Lacík , Vladimír Štefuca , Milan Polakovič , Michal Rosenberg , Martin Rebroš , Daniela Šmogrovičová and Juraj Švitel
Published/Copyright: July 27, 2012
Become an author with De Gruyter Brill

Abstract

Biological molecules such as enzymes, cells, antibodies, lectins, peptide aptamers, and cellular components in an immobilized form are extensively used in biotechnology, in biorecognition and in many medicinal applications. This review provides a comprehensive summary of the developments in new immobilization materials, techniques, and their practical applications previously developed by the authors. A detailed overview of several immobilization materials and technologies is given here, including bead cellulose, encapsulation in ionotropic gels and polyelectrolyte complexes, and various immobilization protocols applied onto surfaces. In addition, the review summarises the screening and design of an immobilization protocol, practical applications of immobilized biocatalysts in the industrial production of metabolites, monitoring, and control of fermentation processes, preparation of electrochemical/optical biosensors and biofuel cells.

[1] Arica, M. Y., & Hasirci, V. (1993). Immobilization of glucose oxidase: a comparison of entrapment and covalent bonding. Journal of Chemical Technology and Biotechnology, 58, 287–292. DOI: 10.1002/jctb.280580313. 10.1002/jctb.280580313Search in Google Scholar

[2] Arica, M. Y., Alaeddinoğlu, N. G., & Hasirci, V. (1998). Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor. Enzyme and Microbial Technology, 22, 152–157. DOI: 10.1016/s0141-0229(97)00139-7. http://dx.doi.org/10.1016/S0141-0229(97)00139-710.1016/S0141-0229(97)00139-7Search in Google Scholar

[3] Barthelmebs, L., Calas-Blanchard, C., Istamboulie, G., Marty, J. L., & Noguer, T. (2010). Biosensors as analytical tools in food fermentation industry. Bio-farms for nutraceuticals: Advances in experimental medicine and biology, 698, 293–307. DOI: 10.1007/978-1-4419-7347-4 22. http://dx.doi.org/10.1007/978-1-4419-7347-4_2210.1007/978-1-4419-7347-4Search in Google Scholar

[4] Bertók, T., Gemeiner, P., Mikula, M., & Tkac, J. (2012a). An ultrasensitive electrochemical label-free detection of a glycoprotein by a lectin-based biosensor device. Analytical and Bioanalytical Chemistry, submitted for press. Search in Google Scholar

[5] Bertók, T., Šefčovičová, J., Gemeiner, P., & Tkáč J. (2012b). Lectinomics: A tool in clinical diagnostics. Chemické Listy, 106, 20–26. (in Slovak) Search in Google Scholar

[6] Bertók, T., Šefčovičová, J., Gemeiner, P., & Tkáč J. (2012c). Development and current trends in manufacture of nanostructure biosensors. Chemické Listy, 106, 174–181. (in Slovak) Search in Google Scholar

[7] Betancor, L., & Luckarift, H. R. (2008). Bioinspired enzyme encapsulation for biocatalysis. Trends in Biotechnology, 26, 566–572. DOI: 10.1016/j.tibtech.2008.06.009. http://dx.doi.org/10.1016/j.tibtech.2008.06.00910.1016/j.tibtech.2008.06.009Search in Google Scholar PubMed

[8] Bílková, Z., Castagna, A., Zanusso, G., Farinazzo, A., Monaco, S., Damoc, E., Przybylski, M., Beneš, M., Lenfeld, J., Viovy, J. L., & Righetti, P. G. (2005). Immunoaffinity reactors for prion qualitative analysis. Proteomics, 5, 639–647. DOI: 10.1002/pmic.200401016. http://dx.doi.org/10.1002/pmic.20040101610.1002/pmic.200401016Search in Google Scholar PubMed

[9] Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilization. Biotechnology Letters, 31, 1639–1650. DOI: 10.1007/s10529-009-0076-4. http://dx.doi.org/10.1007/s10529-009-0076-410.1007/s10529-009-0076-4Search in Google Scholar PubMed

[10] Bučko, M., Vikartovská, A., Lacík, I., Kolláriková, G., Gemeiner, P., Pätoprstý, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126. DOI: 10.1016/j.enzmictec.2004.07.006. http://dx.doi.org/10.1016/j.enzmictec.2004.07.00610.1016/j.enzmictec.2004.07.006Search in Google Scholar

[11] Bučko, M., Vikartovská, A., Gemeiner, P., Lacík, I., Kolláriková, G., & Marison, I. W. (2006). Nocardia tartaricans cells immobilized in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine)capsules: mechanical resistance and operational stability. Journal of Chemical Technology and Biotechnology, 81, 500–504. DOI: 10.1002/jctb.1466. http://dx.doi.org/10.1002/jctb.146610.1002/jctb.1466Search in Google Scholar

[12] Bučko, M., Gemeiner, P., Vikartovská, A., Mislovičová, D., Lacík, I., & Tkčá, J. (2010). Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of D-gluconic acid and δ-gluconolactone production. Artificial Cells, Blood Substitutes and Biotechnology, 38, 90–98. DOI: 10.3109/10731191003634745. http://dx.doi.org/10.3109/1073119100363474510.3109/10731191003634745Search in Google Scholar PubMed

[13] Bučko, M., Schenkmayerová, A., Gemeiner, P., Vikartovská, A., Mihovilovič, M. D., & Lacík, I. (2011). Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzyme and Microbial Technology, 49, 284–288. DOI: 10.1016/j.enzmictec.2011.05.013. http://dx.doi.org/10.1016/j.enzmictec.2011.05.01310.1016/j.enzmictec.2011.05.013Search in Google Scholar PubMed

[14] Chien, L. J., & Lee, C. K. (2008). Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle. Biotechnology and Bioengineering, 100, 223–230. DOI: 10.1002/bit.21750. http://dx.doi.org/10.1002/bit.2175010.1002/bit.21750Search in Google Scholar PubMed

[15] Cowan, D. A., & Fernandez-Lafuente, R. (2011). Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 49, 326–346. DOI: 10.1016/j.enzmictec.2011.06.023. http://dx.doi.org/10.1016/j.enzmictec.2011.06.02310.1016/j.enzmictec.2011.06.023Search in Google Scholar PubMed

[16] Czichocki, G., Dautzenberg, H., Capan, E., & Vorlop, K. D. (2001). New and effective entrapment of polyelectrolyteenzyme-complexes in LentiKats. Biotechnology Letters, 23, 1303–1307. DOI: 10.1023/a:1010569322537. http://dx.doi.org/10.1023/A:101056932253710.1023/A:1010569322537Search in Google Scholar

[17] Danielsson, B., & Mosbach, K. (1988). Enzyme thermistors. In S. P. Colowick, & N. O. Kaplan (Eds.), Methods in enzymology, (Vol. 137, pp. 181–197). San Diego, CA, USA: Academic Press. Search in Google Scholar

[18] Dautzenberg, H. (1997). Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: Polyelectrolyte complex formation in the presence of NaCl. Macromolecules, 30, 7810–7815. DOI: 10.1021/ma970803f. http://dx.doi.org/10.1021/ma970803f10.1021/ma970803fSearch in Google Scholar

[19] Davis, J. J., Tkac, J., Laurenson, S., & Ferrigno, P. K. (2007). Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Analytical Chemistry, 79, 1089–1096. DOI: 10.1021/ac061863z. http://dx.doi.org/10.1021/ac061863z10.1021/ac061863zSearch in Google Scholar PubMed

[20] Davis, J. J., Tkac, J., Humphreys, R., Buxton, A. T., Lee, T. A., & Ferrigno, P. K. (2009). Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms. Analytical Chemistry, 81, 3314–3320. DOI: 10.1021/ac802513n. http://dx.doi.org/10.1021/ac802513n10.1021/ac802513nSearch in Google Scholar PubMed

[21] de Vos, P., Bučko, M., Gemeiner, P., Navrátil, M., Švitel, J., Faas, M., Strand, B. L., Skjak-Braek, G., Morch, Y. A., Vikartovská, A., Lacík, I., Kolláriková, G., Orive, G., Poncelet, D., Pedraz, J. L., & Ansorge-Schumacher, M. B. (2009). Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials, 30, 2559–2570. DOI: 10.1016/j.biomaterials.2009.01.014. http://dx.doi.org/10.1016/j.biomaterials.2009.01.01410.1016/j.biomaterials.2009.01.014Search in Google Scholar PubMed

[22] Ding, W. A., & Vorlop, K. D. (1995). German Patent DE No. 4327923. Munich, Germany: Deutches Patent- und Markenamt. Search in Google Scholar

[23] Eckermann, A. L., Feld, D. J., Shaw, J. A., & Meade, T. J. (2010). Electrochemistry of redox-active self-assembled monolayers. Coordination Chemistry Reviews, 254, 1769–1802. DOI: 10.1016/j.ccr.2009.12.023. http://dx.doi.org/10.1016/j.ccr.2009.12.02310.1016/j.ccr.2009.12.023Search in Google Scholar PubMed PubMed Central

[24] Fam, D. W. H., Palaniappan, A., Tok, A. I. Y., Liedberg, B., & Moochhala, S. M. (2011). A review on technological aspects influencing commercialization of carbon nanotube sensors. Sensors and Actuators B: Chemical, 157, 1–7. DOI: 10.1016/j.snb.2011.03.040. http://dx.doi.org/10.1016/j.snb.2011.03.04010.1016/j.snb.2011.03.040Search in Google Scholar

[25] Ferapontova, E. E., Shleev, S., Ruzgas, T., Stoica, L., Christenson, A., Tkac, J., Yaropolov, A. I., & Gorton, L. (2005). Direct electrochemistry of proteins and enzymes. In E. Paleček, F. Scheller, & J. Wang (Eds.), Perspectives in bioanalysis: 1 Electrochemistry of nucleic acids and proteins (pp. 517–598). London, UK: Elsevier. Search in Google Scholar

[26] Filip, J., Šefčovičová, J., Tomčík, P., Gemeiner, P., & Tkac, J. (2011). A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta, 84, 355–361. DOI: 10.1016/j.talanta.2011.01.004. http://dx.doi.org/10.1016/j.talanta.2011.01.00410.1016/j.talanta.2011.01.004Search in Google Scholar PubMed

[27] Filip, J., Gemeiner, P., Tomčík, P., & Tkáč, J. (2012a). Microbial fuel cells — features and development. Chemické Listy, 106, 158–165. (in Czech) Search in Google Scholar

[28] Filip, J., Šefčovičová, J., Gemeiner, P., & Tkac, J. (2012b). Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochimica Acta, submittedfor press. 10.1016/j.electacta.2012.09.054Search in Google Scholar

[29] Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353, 2885–2904. DOI: 10.1002/adsc.201100534. http://dx.doi.org/10.1002/adsc.20110053410.1002/adsc.201100534Search in Google Scholar

[30] Gavrilescu, M., & Chisti, Y. (2005). Biotechnology-a sustainable alternative for chemical industry. Biotechnology Advances, 23, 471–499. DOI: 10.1016/j.biotechadv.2005.03.004. http://dx.doi.org/10.1016/j.biotechadv.2005.03.00410.1016/j.biotechadv.2005.03.004Search in Google Scholar

[31] Gemeiner, P. (1992). Natural carriers for immobilized biosystems. In P. Gemeiner (Ed.), Enzyme engineering. Immobilized biosystems (pp. 15–75, pp. 110–117). Bratislava, Slovakia: Ellis Horwood & Alfa Publishers. Search in Google Scholar

[32] Gemeiner, P., Zemek, J., & Vojtisek, V. (1987). Immobilized enzymes. In P. Gemeiner (Ed.), Enzyme engineering (pp. 126–182). Bratislava, Slovakia: Alfa Publishers. (in Slovak) Search in Google Scholar

[33] Gemeiner, P., Štefuca, V., & Báleš, V. (1993). Biochemical engineering of biocatalysts immobilized on cellulose materials. Enzyme and Microbial Technology, 15, 551–566. DOI: 10.1016/0141-0229(93)90017-v. http://dx.doi.org/10.1016/0141-0229(93)90017-V10.1016/0141-0229(93)90017-VSearch in Google Scholar

[34] Gemeiner, P., Rexová-Benková, Ł., Švec, F., & Norrlöw, O. (1994). Natural and synthetic carriers suitable for immobilization of viable cells, active organelles and molecules. In I. A. Veliky, & R. J. C. McLean (Eds.), Immobilized biosystems: Theory and practical applications (pp. 1–128). London, UK: Chapman & Hall. Search in Google Scholar

[35] Gemeiner, P., Dočolomanská, P., Vikartovská, A., & Štefuca, V. (1998). Amplification of flow micro-calorimetry signal by means of multiple bioaffinity layering of lectin and glycoenzyme. Biotechnology and Applied Biochemistry, 28, 155–162. DOI: 10.1111/j.1470-8744.1998.tb00525.x. Search in Google Scholar

[36] Gemeiner, P., Mislovičová, D., Tkáč, J., Švitel, J., Pätoprstý, V., Hrabárová, E., Kogan, G., & Kožár, T. (2009). Lectinomics: II. A highway to biomedical/clinical diagnostics. Biotechnology Advances, 27, 1–15. DOI: 10.1016/j.biotechadv.2008.07.003. 10.1016/j.biotechadv.2008.07.003Search in Google Scholar PubMed

[37] Gröger, H., Capan, E., Barthuber, A., & Vorlop, K. D. (2001). Asymetric synthesis of an (R)-cyanohydrin using enzymes entrapped in lens-shaped gels. Organic Letters, 3, 1969–1972. DOI: 10.1021/ol015920g. http://dx.doi.org/10.1021/ol015920g10.1021/ol015920gSearch in Google Scholar PubMed

[38] Grosová, Z., Rosenberg, M., Rebroš, M., Šipocz, M., & Sedláčková, B. (2008). Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnology Letters, 30, 763–767. DOI: 10.1007/s10529-007-9606-0. http://dx.doi.org/10.1007/s10529-007-9606-010.1007/s10529-007-9606-0Search in Google Scholar PubMed

[39] Hernandez, K., & Fernandez-Lafuente, R. (2011). Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology, 48, 107–122. DOI: 10.1016/j.enzmictec.2010.10.003. http://dx.doi.org/10.1016/j.enzmictec.2010.10.00310.1016/j.enzmictec.2010.10.003Search in Google Scholar PubMed

[40] Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462–493. DOI: 10.1021/cr068107d. http://dx.doi.org/10.1021/cr068107d10.1021/cr068107dSearch in Google Scholar PubMed

[41] Hucík, M., Bučko, M., Gemeiner, P., Štefuca, V., Vikartovská, A., Mihovilovič, M. D., Rudroff, F., Iqbal, N., Chorvát, D., Jr., & Lacík, I. (2010). Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer-Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnology Letters, 32, 675–680. DOI: 10.1007/s10529-010-0203-2. http://dx.doi.org/10.1007/s10529-010-0203-210.1007/s10529-010-0203-2Search in Google Scholar PubMed

[42] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar

[43] Kalimuthu, P., Tkac, J., Kappler, U., Davis, J. J., & Bernhardt, P. V. (2010). Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Analytical Chemistry, 82, 7374–7379. DOI: 10.1021/ac101493y. http://dx.doi.org/10.1021/ac101493y10.1021/ac101493ySearch in Google Scholar PubMed

[44] Katrlík, J., Mastihuba, V., Voštiar, I., Šefčovičová, J., Štefuca, V., & Gemeiner, P. (2006). Amperometric biosensors based on two different enzyme systems and their use for glycerol determination in samples from biotechnological fermentation process. Analytica Chimica Acta, 566, 11–18. DOI: 10.1016/j.aca.2006.02.063. http://dx.doi.org/10.1016/j.aca.2006.02.06310.1016/j.aca.2006.02.063Search in Google Scholar

[45] Katrlík, J., Voštiar, I., Šefčovičová, J., Tkáč, J., Mastihuba, V., Valach, M., Štefuca, V., & Gemeiner, P. (2007). A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analytical and Bioanalytical Chemistry, 388, 287–295. DOI: 10.1007/s00216-007-1211-5. http://dx.doi.org/10.1007/s00216-007-1211-510.1007/s00216-007-1211-5Search in Google Scholar PubMed

[46] Katrlík, J., Švitel, J., Gemeiner, P., Kožár, T., & Tkac, J. (2010). Glycan and lectin microarrays for glycomics and medicinal applications. Medicinal Research Reviews, 30, 394–418. DOI: 10.1002/med.20195. 10.1002/med.20195Search in Google Scholar PubMed

[47] Katrlík, J., Škrabana, R., Mislovičová, D., & Gemeiner, P. (2011). Binding of D-mannose-containing glycoproteins to D-mannose-specific lectins studied by surface plasmon resonance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 198–202. DOI: 10.1016/j.colsurfa.2011.01.020. http://dx.doi.org/10.1016/j.colsurfa.2011.01.02010.1016/j.colsurfa.2011.01.020Search in Google Scholar

[48] Kim, J., Grate, J. W., & Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends in Biotechnology, 26, 639–646. DOI: 10.1016/j.tibtech.2008.07.009. http://dx.doi.org/10.1016/j.tibtech.2008.07.00910.1016/j.tibtech.2008.07.009Search in Google Scholar PubMed

[49] Korecká, L., Bílková, Z., Holčápek, M., Královsky, J., Beneš, M., Lenfeld, J., Minc, N., Cecal, R., Viovy, J. L., & Przybylski, M. (2004). Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments. Journal of Chromatography B, 808, 15–24. DOI: 10.1016/j.jchromb.2004.04.035. http://dx.doi.org/10.1016/j.jchromb.2004.04.03510.1016/j.jchromb.2004.04.035Search in Google Scholar PubMed

[50] Kurillova, Ł., Gemeiner, P., Vikartovska, A., Mikova, H., Rosenberg, M., & Ilavsky, M. (2000). Calcium pectate gel beads for cell entrapment. 6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology. Journal of Microencapsulation, 17, 279–296. DOI: 10.1080/026520400288265. http://dx.doi.org/10.1080/02652040028826510.1080/026520400288265Search in Google Scholar PubMed

[51] Lacík, I. (2004). Polyelectrolyte complexes for microcapsule formation: In V. Nedović, & R. Willaert (Eds.), Focus on biotechnology, Fundamentals of cell immobilisation biotechnology (pp. 103–120). Dordrecht, The Netherlands: Kluwer Academic Publishers. Search in Google Scholar

[52] Lacík, I. (2006). Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans: Review to 2006. Australian Journal of Chemistry, 59, 508–524. DOI: 10.1071/ch06197. http://dx.doi.org/10.1071/CH0619710.1071/CH06197Search in Google Scholar

[53] Laurent, N., Haddoub, R., & Flitsch, S. L. (2008). Enzyme catalysts on solid surfaces. Trends in Biotechnology, 26, 328–337. DOI: 10.1016/j.tibtech.2008.03.003. http://dx.doi.org/10.1016/j.tibtech.2008.03.00310.1016/j.tibtech.2008.03.003Search in Google Scholar

[54] Lozinsky, V. I., & Plieva, F. M. (1998). Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme and Microbial Technology, 23, 227–242. DOI: 10.1016/s0141-0229(98)00036-2. http://dx.doi.org/10.1016/S0141-0229(98)00036-210.1016/S0141-0229(98)00036-2Search in Google Scholar

[55] Maksymovych, P., Voznyy, O., Dougherty, D. B., Sorescu, D. C., & Yates, J. T., Jr. (2010). Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Progress in Surface Science, 85, 206–240. DOI: 10.1016/j.progsurf.2010.05.001. http://dx.doi.org/10.1016/j.progsurf.2010.05.00110.1016/j.progsurf.2010.05.001Search in Google Scholar

[56] Malík, F. (2006). Study of dynamic behavior of systems with immobilized biocatalyst. PhD. thesis, Slovak University of Technology, Bratislava, Slovakia. Search in Google Scholar

[57] Malík, F., & Štefuca, V. (2002). Acetylcholine esterase — dynamic behaviour with flow calorimetry. Chemical Papers, 56, 406–411. Search in Google Scholar

[58] Malík, F., Štefuca, V., & Báleš, V. (2004). Investigation of kinetics of immobilized liver esterase by flow calorimetry. Journal of Molecular Catalysis B — Enzymatic, 29, 81–87. DOI: 10.1016/j.molcatb.2003.12.016. http://dx.doi.org/10.1016/j.molcatb.2003.12.01610.1016/j.molcatb.2003.12.016Search in Google Scholar

[59] Masárová, J., Mislovičová, D., Mendichi, R., Švitel, J., Gemeiner, P., & Danielsson, B. (2004). Mannan-penicillin G acylase neoglycoproteins and their potential applications in biotechnology. Biotechnology and Applied Biochemistry, 39, 285–291. DOI: 10.1042/ba20030169. http://dx.doi.org/10.1042/BA2003016910.1042/BA20030169Search in Google Scholar

[60] Mislovičová, D., Masárová, J., Švitel, J., & Gemeiner, P. (2002a). Influence of mannan epitopes in glycoproteins-Concanavalin A interaction. Comparison of natural and synthetic glycosylated proteins. International Journal of Biological Macromolecules, 30, 251–258. DOI: 10.1016/s0141-8130(02)00035-1. 10.1016/S0141-8130(02)00035-1Search in Google Scholar

[61] Mislovicová, D., Masárová, J., Svitel, J., Mendichi, R., Soltés, L., Gemeiner, P., & Danielsson, B. (2002b). Neoglycoconjugates of mannan with bovine serum albumin and their interaction with lectin concanavalin A. Bioconjugate Chemistry, 13, 136–142. http://dx.doi.org/10.1021/bc015517u10.1021/bc015517uSearch in Google Scholar PubMed

[62] Mislovičová, D., Masárová, J., Vikartovská, A., Gemeiner, P., & Michalková, E. (2004). Biospecific immobilization of mannan-penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose. Journal of Biotechnolology, 110, 11–19. DOI: 10.1016/j.jbiotec.2004.01.006. http://dx.doi.org/10.1016/j.jbiotec.2004.01.00610.1016/j.jbiotec.2004.01.006Search in Google Scholar PubMed

[63] Mislovičová, D., Masárová, J., Hostinová, E., Gašperík, J., & Gemeiner, P. (2006). Modulation of biorecognition of glucoamylases with Concanavalin A by glycosylation via recombinant expression. International Journal of Biological Macromolecules, 39, 286–290. DOI: 10.1016/j.ijbiomac.2006.04.005. http://dx.doi.org/10.1016/j.ijbiomac.2006.04.00510.1016/j.ijbiomac.2006.04.005Search in Google Scholar PubMed

[64] Mislovičová, D., Michálková, E., & Vikartovská, A. (2007). Immobilized glucose oxidase on different supports for biotransformation removal of glucose from oligosaccharide mixtures. Process Biochemistry, 42, 704–709. DOI: 10.1016/j.procbio.2006.11.001. http://dx.doi.org/10.1016/j.procbio.2006.11.00110.1016/j.procbio.2006.11.001Search in Google Scholar

[65] Mislovičová, D., Gemeiner, P., Kozarova, A. & Kožár, T. (2009a). Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia, 64, 1–19. DOI: 10.2478/s11756-009-0029-3. http://dx.doi.org/10.2478/s11756-009-0029-310.2478/s11756-009-0029-3Search in Google Scholar

[66] Mislovičová, D., Turjan, J., Vikartovská, A., & Pätoprstý, V. (2009b). Removal of D-glucose from a mixture with D-mannose using immobilized glucose oxidase. Journal of Molecular Catalysis B: Enzymatic, 60, 45–49. DOI: 10.1016/j.molcatb.2009.03.009. http://dx.doi.org/10.1016/j.molcatb.2009.03.00910.1016/j.molcatb.2009.03.009Search in Google Scholar

[67] Mislovičová, D., Pätoprstý, V., & Vikartovská, A. (2010). Enzymatic oxidation and separation of various saccharides with immobilized glucose oxidase. Applied Biochemistry and Biotechnology, 162, 1669–1677. DOI: 10.1007/s12010-010-8948-6. http://dx.doi.org/10.1007/s12010-010-8948-610.1007/s12010-010-8948-6Search in Google Scholar

[68] Mislovičová, D., Katrlík, J., Paulovičová, E., Gemeiner, P., & Tkac, J. (2012). Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. Colloids and Surfaces B: Biointerfaces, 94, 163–169. DOI: 10.1016/j.colsurfb.2012.01.036. http://dx.doi.org/10.1016/j.colsurfb.2012.01.03610.1016/j.colsurfb.2012.01.036Search in Google Scholar

[69] Mosbach, K., & Danielsson, B. (1974). An enzyme thermistor. Biochimica et Biophysica Acta (BBA) — Enzymology, 364, 140–145. DOI: 10.1016/0005-2744(74)90141-7. http://dx.doi.org/10.1016/0005-2744(74)90141-710.1016/0005-2744(74)90141-7Search in Google Scholar

[70] Nahálka, J. (2008). Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to α-D-glucose-1-phosphate. Journal of Industrial Microbiology & Biotechnology, 35, 219–223. DOI: 10.1007/s10295-007-0287-4. http://dx.doi.org/10.1007/s10295-007-0287-410.1007/s10295-007-0287-4Search in Google Scholar PubMed

[71] Nahálka, J., Wu, B., Shao, J., Gemeiner, P., & Wang, P. G. (2004). Production of cytidine 5′-monophospho-N-acetyl-β-D-neuraminic acid (CMP-sialic acid) using enzymes or whole cells entrapped in calcium pectate-silica-gel beads. Biotechnology and Applied Biochemistry, 40, 101–106. DOI: 10.1042/ba20030159. http://dx.doi.org/10.1042/BA2003015910.1042/BA20030159Search in Google Scholar PubMed

[72] Nahálka, J., Gemeiner, P., Bučko, M., & Wang, P. G. (2006). Bioenergy beads: A tool for regeneration of ATP/NTP in biocatalytic synthesis. Artificial Cells, Blood Substitutes and Biotechnology, 34, 515–521. DOI: 10.1080/10731190600862886. http://dx.doi.org/10.1080/1073119060086288610.1080/10731190600862886Search in Google Scholar PubMed

[73] Nahalka, J., & Nidetzky, B. (2007). Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnology and Bioengineering, 97, 454–461. DOI: 10.1002/bit.21244. http://dx.doi.org/10.1002/bit.2124410.1002/bit.21244Search in Google Scholar PubMed

[74] Nahálka, J., Vikartovská, A., & Hrabárová, E. (2008). A crosslinked inclusion body process for sialic acid synthesis. Journal of Biotechnolology, 134, 146–153. DOI: 10.1016/j.jbiotec.2008.01.014. http://dx.doi.org/10.1016/j.jbiotec.2008.01.01410.1016/j.jbiotec.2008.01.014Search in Google Scholar PubMed

[75] Nahálka, J., Mislovičová, D., & Kavcová, H. (2009). Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Molecular BioSystems, 5, 819–821. DOI: 10.1039/b900526a. http://dx.doi.org/10.1039/b900526a10.1039/b900526aSearch in Google Scholar

[76] Nahálka, J., & Pätoprstý, V. (2009). Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Organic & Biomolecular Chemistry, 7, 1778–1780. DOI: 10.1039/b822549b. http://dx.doi.org/10.1039/b822549b10.1039/b822549bSearch in Google Scholar

[77] Nahálková, J., Švitel, J., Gemeiner, P., Danielsson, B., Pribulová, B., & Petruš, L. (2002). Affinity analysis of lectin interaction with immobilized C- and O-glycosides studied by surface plasmon resonance assay. Journal of Biochemical and Biophysical Methods, 52, 11–18. DOI: 10.1016/s0165-022x(02)00016-7. http://dx.doi.org/10.1016/S0165-022X(02)00016-710.1016/S0165-022X(02)00016-7Search in Google Scholar

[78] Navrátil, M., Tkčá, J., Švitel, J., Danielsson, B., & Šturdík, E. (2001). Monitoring of the bioconversion of glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cell using thermometric flow injection analysis. Process Biochemistry, 36, 1045–1052. DOI: 10.1016/s0032-9592(00)00298-3. http://dx.doi.org/10.1016/S0032-9592(00)00298-310.1016/S0032-9592(00)00298-3Search in Google Scholar

[79] Navrátil, M., Gemeiner, P., Klein, J., Šturdík, E., Malovíková, A., Nahálka, J., Vikartovská, A., Dömény, Z., & Šmogrovičová, D. (2002). Properties of hydrogel materials used for entrapment of microbial cells in production of fermented beverages. Artifical Cells, Blood Substitutes and Immobilization Biotechnology, 30, 199–218. DOI: 10.1081/bio-120004340. http://dx.doi.org/10.1081/BIO-12000434010.1081/BIO-120004340Search in Google Scholar

[80] Ortner, V., Kaspar, C., Halter, C., Töllner, L., Mykhaylyk, O., Walzer, J., Günzburg, W. H., Dangerfield, J. A., Hohenadl, C., & Czerny, T. (2012) Magnetic field-controlled gene expression in encapsulated cells. Journal of Controlled Release, 158, 424–432. DOI: 10.1016/j.jconrel.2011.12.006. http://dx.doi.org/10.1016/j.jconrel.2011.12.00610.1016/j.jconrel.2011.12.006Search in Google Scholar

[81] Prüsse, U., Bilancetti, L., Bučko, M., Bugarski, B., Bukowski, J., Gemeiner, P., Lewińska, D., Manojlovic, V., Massart, B., Nastruzzi, C., Nedovic, V., Poncelet, D., Siebenhaar, S., Tobler, L., Tosi, A., Vikartovská, A., & Vorlop, K. D. (2008). Comparison of different technologies for alginate beads production. Chemical Papers, 62, 364–374. DOI: 10.2478/s11696-008-0035-x. http://dx.doi.org/10.2478/s11696-008-0035-x10.2478/s11696-008-0035-xSearch in Google Scholar

[82] Pumera, M. (2011). Graphene in biosensing. Materials Today, 14, 308–315. DOI: 10.1016/s1369-7021(11)70160-2. http://dx.doi.org/10.1016/S1369-7021(11)70160-210.1016/S1369-7021(11)70160-2Search in Google Scholar

[83] Rebroš, M., Rosenberg, M., Stloukal, R., & Krištofíková, Ł. (2005). High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats®. Letters in Applied Microbiology, 41, 412–416. DOI: 10.1111/j.1472-765x.2005.01770.x. http://dx.doi.org/10.1111/j.1472-765X.2005.01770.x10.1111/j.1472-765X.2005.01770.xSearch in Google Scholar PubMed

[84] Rebroš, M., Rosenberg, M., Mlichová, Z., Krištofíková, Ł., & Paluch, M. (2006). A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis. Enzyme and Microbial Technology, 39, 800–804. DOI: 10.1016/j.enzmictec.2006.01.001. http://dx.doi.org/10.1016/j.enzmictec.2006.01.00110.1016/j.enzmictec.2006.01.001Search in Google Scholar

[85] Rebroš, M., Rosenberg, M., Mlichová, Z., & Krištofíková, Ł. (2007). Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry, 102, 784–787. DOI: 10.1016/j.foodchem.2006.06.020. http://dx.doi.org/10.1016/j.foodchem.2006.06.02010.1016/j.foodchem.2006.06.020Search in Google Scholar

[86] Rich, R. L., & Myszka, D. G. (2010). Grading the commercial optical biosensor literature-Class of 2008: ‘The Mighty Binders’. Journal of Molecular Recognition, 23, 1–64. DOI: 10.1002/jmr.1004. http://dx.doi.org/10.1002/jmr.100410.1002/jmr.1004Search in Google Scholar

[87] Rodrigues, R. C., Berenguer-Murcia, á., & Fernandez-Lafuente, R. (2011). Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Advanced Synthesis and Catalysis, 353, 2216–2238. DOI: 10.1002/adsc.201100163. http://dx.doi.org/10.1002/adsc.20110016310.1002/adsc.201100163Search in Google Scholar

[88] Rosenberg, M., Rebroš, M., Krištofíková, L., & Malatová, K. (2005). High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnology Letters, 27, 1943–1947. DOI: 10.1007/s10529-005-3907-y. http://dx.doi.org/10.1007/s10529-005-3907-y10.1007/s10529-005-3907-ySearch in Google Scholar

[89] Rotková, J., Šuláková, R., Korecká, L., Zdražilová, P., Jandová, M., Lenfeld, J., Horák, D., & Bílková, Z. (2009). Laccase immobilized on magnetic carriers for biotechnology applications. Journal of Magnetism and Magnetic Materials, 321, 1335–1340. DOI: 10.1016/j.jmmm.2009.02.034. http://dx.doi.org/10.1016/j.jmmm.2009.02.03410.1016/j.jmmm.2009.02.034Search in Google Scholar

[90] Schenkmayerová, A., Bučko, M., Gemeiner, P., Chorvát, D., & Lacík, I. (2012). Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer-Villiger biooxidation by confocal laser scanning microscopy. Biotechnology Letters, 34, 309–314. DOI: 10.1007/s10529-011-0765-7. http://dx.doi.org/10.1007/s10529-011-0765-710.1007/s10529-011-0765-7Search in Google Scholar

[91] Scouten, W. H., Luong, J. H. T., & Brown, R. S. (1995). Enzyme or protein immobilization techniques for applications in biosensor design. Trends in Biotechnology, 13, 178–185. DOI: 10.1016/s0167-7799(00)88935-0. http://dx.doi.org/10.1016/S0167-7799(00)88935-010.1016/S0167-7799(00)88935-0Search in Google Scholar

[92] Šefčovičová, J., Katrlík, J., Štefuca, V., Mastihuba, V., Voštiar, I., Greif, G., Bučko, M., Tkac, J., & Gemeiner, P. (2008). A filtration probe-free on-line monitoring of glycerol during fermentation by a biosensor device. Enzyme and Microbial Technology, 42, 434–439. DOI: 10.1016/j.enzmictec.2008.01.006. http://dx.doi.org/10.1016/j.enzmictec.2008.01.00610.1016/j.enzmictec.2008.01.006Search in Google Scholar

[93] Šefčovičová, J., Vikartovská, A., Pätoprstý, V., Magdolen, P., Katrlík, J., Tkac, J., & Gemeiner, P. (2009). Off-line FIA monitoring of D-sorbitol consumption during L-sorbose production using a sorbitol biosensor. Analytica Chimica Acta, 644, 68–71. DOI: 10.1016/j.aca.2009.04.012. http://dx.doi.org/10.1016/j.aca.2009.04.01210.1016/j.aca.2009.04.012Search in Google Scholar PubMed

[94] Šefčovičová, J., Filip, J., Gemeiner, P., Vikartovská, A., Pätoprstý, V., & Tkac, J. (2011a). High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochemistry Communications, 13, 966–968. DOI: 10.1016/j.elecom.2011.06.013. http://dx.doi.org/10.1016/j.elecom.2011.06.01310.1016/j.elecom.2011.06.013Search in Google Scholar

[95] Šefčovičová, J., Filip, J., Tomčík, P., Gemeiner, P., Bučko, M., Magdolen, P., & Tkac, J. (2011b). A biopolymer-based carbon nanotube interface integrated with a redox shuttle and a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol. Microchimica Acta, 175, 21–30. DOI: 10.1007/s00604-011-0641-0. http://dx.doi.org/10.1007/s00604-011-0641-010.1007/s00604-011-0641-0Search in Google Scholar

[96] Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012). Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI: 10.1007/s10529-012-0875-x. http://dx.doi.org/10.1007/s10529-012-0875-x10.1007/s10529-012-0875-xSearch in Google Scholar

[97] Sheldon, R. A. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology, 92, 467–477. DOI: 10.1007/s00253-011-3554-2. http://dx.doi.org/10.1007/s00253-011-3554-210.1007/s00253-011-3554-2Search in Google Scholar

[98] Skerra, A. (2007). Alternative non-antibody scaffolds for molecular recognition. Current Opinion in Biotechnology, 18, 295–304. DOI: 10.1016/j.copbio.2007.04.010. http://dx.doi.org/10.1016/j.copbio.2007.04.01010.1016/j.copbio.2007.04.010Search in Google Scholar

[99] Štefuca, V., Gemeiner, P., Kurillová, Ł., Dautzenberg, H., Polakovič, M., & Báleš, V. (1991). Polyelectrolyte complex capsules as a material for enzyme immobilization. Applied Biochemistry and Biotechnology, 30, 313–324. DOI: 10.1007/bf02922035. http://dx.doi.org/10.1007/BF0292203510.1007/BF02922035Search in Google Scholar

[100] Štefuca, V., & Gemeiner, P. (1999). Investigation of catalytic properties of immobilized enzymes and cells by flow microcalorimetry. Thermal Biosensors, Bioactivity, Bioaffinitty. Advances in Biochemical Engineering — Biotechnology, 64, 69–99. DOI: 10.1007/3-540-49811-7 3. http://dx.doi.org/10.1007/3-540-49811-7_310.1007/3-540-49811-7Search in Google Scholar

[101] Štefuca, V., Čipáková, I., & Gemeiner, P. (2001). Investigation of immobilized glucoamylase kinetics by flow calorimetry. Thermochimica Acta, 378, 79–85. DOI: 10.1016/s0040-6031(01)00589-5. http://dx.doi.org/10.1016/S0040-6031(01)00589-510.1016/S0040-6031(01)00589-5Search in Google Scholar

[102] Štefuca, V., Voštiar, I., Šefčovičová, J., Katrlík, J., Mastihuba, V., Greifová, M., & Gemeiner, P. (2006). Development of enzyme flow calorimeter system for monitoring of microbial glycerol conversion. Applied Microbiology and Biotechnology, 72, 1170–1175. DOI: 10.1007/s00253-006-0420-8. http://dx.doi.org/10.1007/s00253-006-0420-810.1007/s00253-006-0420-8Search in Google Scholar

[103] Švitel, J., Dzgoev, A., Ramanathan, K., & Danielsson, B. (2000). Surface plasmon resonance based pesticide assay on a renewable biosensing surface using the reversible concanavalin A monosaccharide interaction. Biosensors and Bioelectronics, 15, 411–415. DOI: 10.1016/s0956-5663(00)00099-3. http://dx.doi.org/10.1016/S0956-5663(00)00099-310.1016/S0956-5663(00)00099-3Search in Google Scholar

[104] Švitel, J., Tkčá, J., Voštiar, I., Navrátil, M., Štefuca, V., Bučko, M., & Gemeiner, P. (2006). Gluconobacter in biosensors: applications of whole cells and enzymes isolated from gluconobacter and acetobacter to biosensor construction. Biotechnology Letters, 28, 2003–2010. DOI: 10.1007/s10529-006-9195-3. http://dx.doi.org/10.1007/s10529-006-9195-310.1007/s10529-006-9195-3Search in Google Scholar PubMed

[105] Svitel, J., Tkac, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Microbial biosensors and biofuel cells based on acetobacter and gluconobacter cells. In R. Comeaux, & P. Novotny (Eds.), Biosensors: Properties, materials and applications (pp. 247–264). New York, NY, USA: Nova Science Publishers. Search in Google Scholar

[106] Thümmler, K., Fisher, S., Feldner, A., Weber, V., Ettenauer, M., Loth, F., & Falkenhagen, D. (2011). Preparation and characterization of cellulose microspheres. Cellulose, 18, 135–142. DOI: 10.1007/s10570-010-9465-z. http://dx.doi.org/10.1007/s10570-010-9465-z10.1007/s10570-010-9465-zSearch in Google Scholar

[107] Tkčá, J., Gemeiner, P., Švitel, J., Benikovsky, T., Šturdík, E., Vala, V., Petruš, L., & Hrabárová, E. (2000). Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Analytica Chimica Acta, 420, 1–7. DOI: 10.1016/s0003-2670(00)01001-1. http://dx.doi.org/10.1016/S0003-2670(00)01001-110.1016/S0003-2670(00)01001-1Search in Google Scholar

[108] Tkčá, J., Navrátil, M., Šturdík, E., & Gemeiner, P. (2001a). Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme and Microbial Technology, 28, 383–388. DOI: 10.1016/s0141-0229(00)00328-8. http://dx.doi.org/10.1016/S0141-0229(00)00328-810.1016/S0141-0229(00)00328-8Search in Google Scholar

[109] Tkčá, J., Voštiar, I., Šturdík, E., Gemeiner, P., Mastihuba, V., & Annus, J. (2001b). Fructose biosensor based on D-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane. Analytica Chimica Acta, 439, 39–46. DOI: 10.1016/s0003-2670(01)01021-2. http://dx.doi.org/10.1016/S0003-2670(01)01021-210.1016/S0003-2670(01)01021-2Search in Google Scholar

[110] Tkčá, J., Voštiar, I., Gemeiner, P., & Šturdík, E. (2002a). Stabilization of ferrocene leakage by physical retention in a cellulose acetate membrane. The fructose biosensor. Bioelectrochemistry, 55, 149–151. DOI: 10.1016/s1567-5394(01)00130-x. http://dx.doi.org/10.1016/S1567-5394(01)00130-X10.1016/S1567-5394(01)00130-XSearch in Google Scholar

[111] Tkac, J., Vostiar, I., Gemeiner, P., & Sturdik, E. (2002b). Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry, 56, 127–129. DOI: 10.1016/s1567-5394(02)00054-3. http://dx.doi.org/10.1016/S1567-5394(02)00054-310.1016/S1567-5394(02)00054-3Search in Google Scholar

[112] Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., & Sturdik, E. (2003). Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics, 18, 1125–1134. DOI: 10.1016/s0956-5663(02)00244-0. 10.1016/S0956-5663(02)00244-0Search in Google Scholar

[113] Tkčá, J., Štefuca, V., & Gemeiner, P. (2005). Biosensors with immobilised microbial cells using amperometric and thermal detection principles. In V. Nedović, & R. Willaert (Eds.), Applications of cell immobilisation biotechnology: Focus on biotechnology (pp. 549–566). Dordrecht, The Netherlands: Springer. Search in Google Scholar

[114] Tkac, J., & Ruzgas, T. (2006). Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochemistry Communications, 8, 899–903. DOI: 10.1016/j.elecom.2006.03.028. 10.1016/j.elecom.2006.03.028Search in Google Scholar

[115] Tkac, J., Whittaker, J. W., & Ruzgas, T. (2007). The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 22, 1820–1824. DOI: 10.1016/j.bios.2006.08.014. http://dx.doi.org/10.1016/j.bios.2006.08.01410.1016/j.bios.2006.08.014Search in Google Scholar PubMed

[116] Tkac, J., & Davis, J. J. (2008). An optimised electrode pre-treatment for SAM formation on polycrystalline gold. Journal of Electroanalytical Chemistry, 621, 117–120. DOI: 10.1016/j.jelechem.2008.04.010. http://dx.doi.org/10.1016/j.jelechem.2008.04.01010.1016/j.jelechem.2008.04.010Search in Google Scholar

[117] Tkac, J., & Davis, J. J. (2009). Label-free field effect protein sensing. In J. J. Davis (Ed.), Engineering the bioelectronic interface: Applications to analyte biosensing and protein detection (pp. 193–224). Cambridge, UK: Royal Society of Chemistry. Search in Google Scholar

[118] Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53–62. DOI: 10.1016/j.bioelechem.2009.02.013. http://dx.doi.org/10.1016/j.bioelechem.2009.02.01310.1016/j.bioelechem.2009.02.013Search in Google Scholar

[119] Uhlich, T., Ulbricht, M., & Tomaschewski, G. (1996). Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol. Enzyme and Microbial Technology, 19, 124–131. DOI: 10.1016/0141-0229(95)00190-5. http://dx.doi.org/10.1016/0141-0229(95)00190-510.1016/0141-0229(95)00190-5Search in Google Scholar

[120] Upadhyayula, V. K. K., & Gadhamshetty, V. (2010). Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: A review. Biotechnology Advances, 28, 802–816. DOI: 10.1016/j.biotechadv.2010.06.006. http://dx.doi.org/10.1016/j.biotechadv.2010.06.00610.1016/j.biotechadv.2010.06.006Search in Google Scholar

[121] Vaithilingam, V., & Tuch, B. E. (2011). Islet transplantation and encapsulation: an update on recent developments. The Review of Diabetic Studies, 8, 63–79. DOI: 10.1900/rds.2011.8.51. http://dx.doi.org/10.1900/RDS.2011.8.5110.1900/RDS.2011.8.51Search in Google Scholar

[122] Valach, M., Katrlík, J., Šturdík, E., & Gemeiner, P. (2009). Ethanol Gluconobacter biosensor designed for flow injection analysis: Application in ethanol fermentation off-line monitoring. Sensors and Actuators B: Chemical, 138, 581–586. DOI: 10.1016/j.snb.2009.02.017. http://dx.doi.org/10.1016/j.snb.2009.02.01710.1016/j.snb.2009.02.017Search in Google Scholar

[123] Vikartovská, A., Bučko, M., Gemeiner, P., Nahálka, J., Pätoprstý, V., & Hrabárová, E. (2004). Flow calorimetry-A useful tool for determination of immobilized cis-epoxysuccinate hydrolase activity from Nocardia tartaricans. Artifical Cells, Blood Substitutes and Biotechnology, 32, 77–89. DOI: 10.1081/BIO-120028670. http://dx.doi.org/10.1081/BIO-12002867010.1081/BIO-120028670Search in Google Scholar

[124] Vikartovská, A., Bučko, M., Mislovičová, D., Pätoprstý, V., Lacík, I., & Gemeiner, P. (2007). Improvement of the stability of glucose oxidase via encapsulation in sodium alginate-cellulose sulfate-poly(methylene-co-guanidine) capsules. Enzyme and Microbial Technology, 41, 748–755. DOI: 10.1016/j.enzmictec.2007.06.010. http://dx.doi.org/10.1016/j.enzmictec.2007.06.01010.1016/j.enzmictec.2007.06.010Search in Google Scholar

[125] Volkert, B., Wolf, B., Fischer, S., Li, N., & Lou, C. (2009). Application of modified bead cellulose as a carrier of active ingredients. Macromolecular Symposia, 280, 130–135. DOI: 10.1002/masy.200950615. http://dx.doi.org/10.1002/masy.20095061510.1002/masy.200950615Search in Google Scholar

[126] Vostiar, I., Tkac, J., Sturdik, E., & Gemeiner, P. (2002). Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe. Bioelectrochemistry, 56, 113–115. DOI: 10.1016/s1567-5394(02)00042-7. http://dx.doi.org/10.1016/S1567-5394(02)00042-710.1016/S1567-5394(02)00042-7Search in Google Scholar

[127] Vostiar, I., Tkac, J., & Mandenius, C. F. (2003). Monitoring of the heat-shock response in Escherichia coli using an optical biosensor. Analytical Biochemistry, 322, 156–163. DOI: 10.1016/j.ab.2003.07.019. http://dx.doi.org/10.1016/j.ab.2003.07.01910.1016/j.ab.2003.07.019Search in Google Scholar PubMed

[128] Vostiar, I., Tkac, J., & Mandenius, C. F. (2004). Off-line monitoring of bacterial stress response during recombinant protein production using an optical biosensor. Journal of Biotechnology, 111, 191–201. DOI: 10.1016/j.jbiotec.2004.04.007. http://dx.doi.org/10.1016/j.jbiotec.2004.04.00710.1016/j.jbiotec.2004.04.007Search in Google Scholar PubMed

[129] Vostiar, I., Tkac, J., & Mandenius, C. F. (2005). Intracellular monitoring of superoxide dismutase expression in an Escherichia coli fed-batch cultivation using on-line disruption with at-line surface plasmon resonance detection. Analytical Biochemistry, 342, 152–159. DOI: 10.1016/j.ab.2005.03.055. http://dx.doi.org/10.1016/j.ab.2005.03.05510.1016/j.ab.2005.03.055Search in Google Scholar PubMed

[130] Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17, 574–579. DOI: 10.1016/j.copbio.2006.10.009. http://dx.doi.org/10.1016/j.copbio.2006.10.00910.1016/j.copbio.2006.10.009Search in Google Scholar PubMed

[131] Wang, P. (2009). Multi-scale features in recent development of enzymic biocatalyst systems. Applied Biochemistry and Biotechnology, 152, 343–352. DOI: 10.1007/s12010-008-8243-y. http://dx.doi.org/10.1007/s12010-008-8243-y10.1007/s12010-008-8243-ySearch in Google Scholar PubMed

[132] Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205–212. DOI: 10.1016/j.tibtech.2011.01.008. http://dx.doi.org/10.1016/j.tibtech.2011.01.00810.1016/j.tibtech.2011.01.008Search in Google Scholar PubMed PubMed Central

[133] Weber, V., Ettenauer, M., Linsberger, I., Loth, F., Thümmler, K., Feldner, A., Fischer, S., & Falkenhagen, D. (2010). Funcionalization and application of cellulose microparticles as adsorbents in extracorporeal blood purification. Macromolecular Symposia, 294, 90–95. DOI: 10.1002/masy.200900042. http://dx.doi.org/10.1002/masy.20090004210.1002/masy.200900042Search in Google Scholar

[134] Wilson, L., Illanes, A., Pessela, B. C. C., Abian, O., Fernández-Lafuente, R., & Guisán, J. M. (2004). Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 86, 558–562. DOI: 10.1002/bit.20107. http://dx.doi.org/10.1002/bit.2010710.1002/bit.20107Search in Google Scholar PubMed

[135] Wittlich, P., Capan, E., Schlieker, M., Vorlop, K. D., & Jahnz, U. (2004). Entrapment in LentiKats®. In V. Nedović, & R. Willaert (Eds.), Fundamentals of cell immobilisation biotechnology: Focus on biotechnology (pp. 53–63). Dordrecht, The Netherlands: Kluwer Academic Publishers. Search in Google Scholar

[136] Woodman, R., Yeh, J. T. H., Laurenson, S., & Ferrigno, P. K. (2005). Design and validation of a neutral protein scaffold for the presentation of peptide aptamers. Journal of Molecular Biology, 352, 1118–1133. DOI: 10.1016/j.jmb.2005.08.001. http://dx.doi.org/10.1016/j.jmb.2005.08.00110.1016/j.jmb.2005.08.001Search in Google Scholar PubMed

[137] Yeo, L. Y., Chang, H. C., Chan, P. P. Y., & Friend, J. R. (2011). Microfluidic devices for bioapplications. Small, 7, 12–48. DOI: 10.1002/smll.201000946. http://dx.doi.org/10.1002/smll.20100094610.1002/smll.201000946Search in Google Scholar PubMed

Published Online: 2012-7-27
Published in Print: 2012-11-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
  2. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
  3. Design simulations for a biogas purification process using aqueous amine solutions
  4. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
  5. Trace elements in Variegated Bolete (Suillus variegatus) fungi
  6. N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
  7. Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
  8. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
  9. Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
  10. Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
  11. Corrosion of titanium diboride in molten FLiNaK(eut)
  12. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
  13. Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0226-3/pdf
Scroll to top button