Startseite Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry

  • Raúl González-Domínguez EMAIL logo , Tamara García-Barrera und José-Luis Gómez-Ariza
Veröffentlicht/Copyright: 22. Juni 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Alzheimer’s disease is the most common neurodegenerative disease, but there is still no cure and early diagnosis remains very difficult. For this reason, the discovery of new biomarkers is of great importance. The application of metabolomics is emerging in this field, based on the use of mass spectrometry as a technique of analysis. In this work, blood serum samples (from Alzheimer’s disease patients and healthy controls) were analysed by mass spectrometry in order to search for potential metabolomic biomarkers. The application of multivariate statistical tools (PLS-DA) enabled us to discriminate between groups. In addition, some phosphatidylcholine compounds were identified as markers of the disease.

[1] Blennow, K. (2004). Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. The American Society for Experimental NeuroTherapeutics, 1, 213–225. DOI: 10.1602/neurorx.1.2.213. http://dx.doi.org/10.1602/neurorx.1.2.21310.1602/neurorx.1.2.213Suche in Google Scholar PubMed PubMed Central

[2] Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S, Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81, 3285–3296. DOI: 10.1021/ac8024569. http://dx.doi.org/10.1021/ac802456910.1021/ac8024569Suche in Google Scholar PubMed

[3] Chen, C. P. L. H., Alder, J. T., Bowen, D. M., Esiri, M. M., McDonald, B., Hope, T., Jobst, K. A., & Francis, P. T. (1996). Presynaptic serotonergic markers in communityacquired cases of Alzheimer’s disease: Correlations with depression and neuroleptic medication. Neurochemistry, 66, 1592–1598. DOI: 10.1046/j.1471-4159.1996.66041592.x. 10.1046/j.1471-4159.1996.66041592.xSuche in Google Scholar PubMed

[4] Conquer, J. A., Tierney, M. C., Zecevic, J., Bettger, W. J., & Fisher, R. H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids, 35, 1305–1312. DOI: 10.1007/s11745-000-0646-3. http://dx.doi.org/10.1007/s11745-000-0646-310.1007/s11745-000-0646-3Suche in Google Scholar PubMed

[5] Dyrks, T., Weidemann, A., Multhaup, G., Salbaum, J. M., Lemaire, H. G., Kang, J., Müller-Hill, B., Masters, C. L., & Beyreuther, K. (1988). Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO Journal, 7, 949–957. 10.1002/j.1460-2075.1988.tb02900.xSuche in Google Scholar PubMed PubMed Central

[6] Goldsmith, P., Fenton, H., Morris-Stiff, G., Ahmad, N., Fisher, J., & Prasad, K. R. (2010). Metabonomics: A useful tool for the future surgeon. Journal of Surgical Research, 160, 122–132. DOI:10.1016/j.jss.2009.03.003. http://dx.doi.org/10.1016/j.jss.2009.03.00310.1016/j.jss.2009.03.003Suche in Google Scholar PubMed

[7] Grammas, P. (2011). Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer’s disease. Journal of Neuroinflammation, 8, 26. DOI:10.1186/1742-2094-8-26. http://dx.doi.org/10.1186/1742-2094-8-2610.1186/1742-2094-8-26Suche in Google Scholar PubMed PubMed Central

[8] Klein, J. (2000). Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. Journal of Neural Transmission, 107, 1027–1063. DOI:10.1007/s007020070051. http://dx.doi.org/10.1007/s00702007005110.1007/s007020070051Suche in Google Scholar PubMed

[9] Martín-Carrasco, M. (2009). Biomarcadores en la enfermedad de Alzheimer: definición, significación diagnóstica y utilidad clínica. Psicogeriatría, 1, 101–114. Suche in Google Scholar

[10] Maruszak, A., & Żekanowski, C. (2011). Mitochondrial dysfunction and Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 320–330. DOI:10.1016/j.pnpbp.2010.07.004. http://dx.doi.org/10.1016/j.pnpbp.2010.07.00410.1016/j.pnpbp.2010.07.004Suche in Google Scholar PubMed

[11] McKahnn, G., Drachman, D., & Folstein, M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34, 939–944. DOI: 10.1212/01.wnl.0000400650.92875.cf. http://dx.doi.org/10.1212/WNL.34.7.93910.1212/01.wnl.0000400650.92875.cfSuche in Google Scholar

[12] Mielke, M. M., & Lyketsos, C. G. (2006). Lipids and the pathogenesis of Alzheimer’s disease: Is there a link? International Review of Psychiatry, 18, 173–186. DOI: 10.1080/09540260600583007. http://dx.doi.org/10.1080/0954026060058300710.1080/09540260600583007Suche in Google Scholar PubMed

[13] Migliore, L., Fontana, I., Colognato, R., Coppede, F., Siciliano, G., & Murri, L. (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiology of Aging, 26, 587–595. DOI:10.1016/j.neurobiolaging.2004.10.002. http://dx.doi.org/10.1016/j.neurobiolaging.2004.10.00210.1016/j.neurobiolaging.2004.10.002Suche in Google Scholar PubMed

[14] Nagy, Z., Esiri, M. M., Jobst, K., Morris, J. H., King, E. M. F., McDonald, B., Litchfield, S., Smith, A., Barnetson, L., & Smith, A. D. (1995). Relative role of plaques and tangles in the dementia of Alzheimer disease: Correlations using three sets of neuropathological criteria. Dementia, 6, 21–31. DOI: 10.1159/000106918. 10.1159/000106918Suche in Google Scholar PubMed

[15] Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189. DOI: 10.1080/004982599238047. http://dx.doi.org/10.1080/00498259923804710.1080/004982599238047Suche in Google Scholar PubMed

[16] Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., & Wurtman, R. J. (1992). Evidence for a membrane defect in Alzheimer disease brain. Procedings of the National Academy of Sciences of the United States of America, 89, 1671–1675. DOI: 10.1073/pnas.89.5.1671. http://dx.doi.org/10.1073/pnas.89.5.167110.1073/pnas.89.5.1671Suche in Google Scholar PubMed PubMed Central

[17] Pettegrew, J. W., Panchalingam, K., Moossy, J., Martinez, J., Rao, G., & Boller, F. (1988) Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer’s disease. Archives of Neurology, 45, 1093–1096. http://dx.doi.org/10.1001/archneur.1988.0052034004701010.1001/archneur.1988.00520340047010Suche in Google Scholar PubMed

[18] Pulfer, M., & Murphy, R. C. (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrometry Reviews, 22, 332–364. DOI: 10.1002/mas.10061. http://dx.doi.org/10.1002/mas.1006110.1002/mas.10061Suche in Google Scholar PubMed

[19] Salek, R. M., Xia, J., Innes, A., Sweatman, B. C., Adalbert, R., Randle, S., McGowan, E., Emson, P. C., & Griffin, J. L. (2010). A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochemistry International, 56, 937–947. DOI:10.1016/j.neuint.2010.04.001. http://dx.doi.org/10.1016/j.neuint.2010.04.00110.1016/j.neuint.2010.04.001Suche in Google Scholar PubMed

[20] Scheneider, P., Hampel, H., & Buerger, K. (2009). Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neuroscience & Therapeutics, 15, 358–374. DOI: 10.1111/j.1755-5949.2009.00104.x. http://dx.doi.org/10.1111/j.1755-5949.2009.00104.x10.1111/j.1755-5949.2009.00104.xSuche in Google Scholar PubMed PubMed Central

[21] Selkoe, D. J. (2004a). Alzheimer’s disease: Mechanistic understanding predicts novel therapies. Annals of Internal Medicine, 140, 627–638. 10.7326/0003-4819-140-8-200404200-00047Suche in Google Scholar PubMed

[22] Selkoe, D. J. (2004b). Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s disease. Nature Cell Biology, 6, 1054–1061. DOI: 10.1038/ncb1104-1054. http://dx.doi.org/10.1038/ncb1104-105410.1038/ncb1104-1054Suche in Google Scholar

[23] Storga, D., Vrecko, K., Birkmayer, J. G. D., & Reibnegger, G. (1996). Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neuroscience Letters, 203, 29–32. DOI: 10.1016/0304-3940(95)12256-7. http://dx.doi.org/10.1016/0304-3940(95)12256-710.1016/0304-3940(95)12256-7Suche in Google Scholar

[24] Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6, 469–479. DOI: 10.1021/pr060594q. http://dx.doi.org/10.1021/pr060594q10.1021/pr060594qSuche in Google Scholar PubMed

[25] Valls-Pedret, C., Molinuevo, J. L., & Rami, L. (2010). Diagnostico precoz de la enfermedad de Alzheimer: fase prodromica y preclinica. Revista de Neurología, 51, 471–480. 10.33588/rn.5108.2010501Suche in Google Scholar

[26] Ward, M. (2007). Biomarkers for Alzheimer’s disease. Expert Review of Molecular Diagnostics, 7, 635–646. DOI: 10.1586/14737159.7.5.635. http://dx.doi.org/10.1586/14737159.7.5.63510.1586/14737159.7.5.635Suche in Google Scholar PubMed

Published Online: 2012-6-22
Published in Print: 2012-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0184-9/html?lang=de
Button zum nach oben scrollen