Startseite Reaction of aniline with ammonium persulphate and concentrated hydrochloric acid: Experimental and DFT studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reaction of aniline with ammonium persulphate and concentrated hydrochloric acid: Experimental and DFT studies

  • Maciej Przybyłek EMAIL logo und Jerzy Gaca
Veröffentlicht/Copyright: 22. Juni 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the reaction of aniline with ammonium persulphate and concentrated HCl was studied. As a result of our experimental studies, 2,4,6-trichlorophenylamine was identified as the main product. This shows that a high concentration of HCl does not favour oxidative polymerisation of phenylamine, even though the ammonium persulphate/HCl system is widely used in polyaniline synthesis. On the basis of the experimental data and density functional theory for reaction path modelling, we proposed a mechanism for oxidative chlorination of aniline. We assumed that this reaction proceeded in three cyclically repeated steps; protonation of aniline, formation of singlet ground state phenylnitrenium cation, and nucleophilic substitution. In order to confirm this mechanism, kinetic, thermochemical, and natural bond orbital population analyses were performed.

[1] AIST, National Institute of Advanced Industrial Science and Technology (2011). Spectral database for organic compounds, SDBS No. 1500. Retrieved October 18, 2011, from http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/directframetop.cgi Suche in Google Scholar

[2] Angioi, S., Polati, S., Roz, M., Rinaudo, C., Gianotti, V., & Gennaro, M. C. (2005). Sorption studies of chloroanilines on kaolinite and montmorillonite. Environmental Pollution, 134, 35–43. DOI:10.1016/j.envpol.2004.07.018. http://dx.doi.org/10.1016/j.envpol.2004.07.01810.1016/j.envpol.2004.07.018Suche in Google Scholar

[3] Badawi, H. M., Förner, W., & Al-Saadi, A. A. (2009). Structural stability, NH2 inversion and vibrational assignments of 2,4,6-trichloroaniline and 2,3,5,6-tetrachloroaniline. Journal of Molecular Structure, 938, 41–47. DOI:10.1016/j.molstruc.2009.09.001. http://dx.doi.org/10.1016/j.molstruc.2009.09.00110.1016/j.molstruc.2009.09.001Suche in Google Scholar

[4] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098. http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Suche in Google Scholar

[5] Becke, A. D. (1993). Density-functional thermochemistry III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. 10.1063/1.464913Suche in Google Scholar

[6] Borodkin, G. I., & Shubin, V. G. (2005). Nitrenium ions and problem of direct electrophilic amination of aromatic compounds. Russian Journal of Organic Chemistry, 41, 473–504. DOI: 10.1007/s11178-005-0193-z. http://dx.doi.org/10.1007/s11178-005-0193-z10.1007/s11178-005-0193-zSuche in Google Scholar

[7] Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566. DOI: 10.1080/00268977000101561. http://dx.doi.org/10.1080/0026897700010156110.1080/00268977000101561Suche in Google Scholar

[8] Camaioni, D. M., & Schwerdtfeger, C. A. (2005). Comment on “Accurate experimental values for the free energies of hydration of H+, OH−, and H3O+ ”. Journal of Physical Chemistry A, 109, 10795–10797. DOI: 10.1021/jp054088k. http://dx.doi.org/10.1021/jp054088k10.1021/jp054088kSuche in Google Scholar

[9] Chiang, J. C., & MacDiarmid, A. G. (1986). ’Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 13, 193–205. DOI: 10.1016/0379-6779(86)90070-6. http://dx.doi.org/10.1016/0379-6779(86)90070-610.1016/0379-6779(86)90070-6Suche in Google Scholar

[10] Clark, T., Chandrasekhar, J., Spitznagel, G. W., & von Ragué Schleyer, P. (1983). Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. Journal of Computational Chemistry, 4, 294–301. DOI: 10.1002/jcc.540040303. http://dx.doi.org/10.1002/jcc.54004030310.1002/jcc.540040303Suche in Google Scholar

[11] Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., & Pople, J. A. (1998). Gaussian-3 (G3) theory for molecules containing first and second-row atoms. Journal of Chemical Physics, 109, 7764–7776. DOI: 10.1063/1.477422. http://dx.doi.org/10.1063/1.47742210.1063/1.477422Suche in Google Scholar

[12] Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008a). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI:10.1016/j.synthmet.2008.01.005. http://dx.doi.org/10.1016/j.synthmet.2008.01.00510.1016/j.synthmet.2008.01.005Suche in Google Scholar

[13] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2006). MNDO-PM3 study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI:10.1135/cccc20061407. http://dx.doi.org/10.1135/cccc2006140710.1135/cccc20061407Suche in Google Scholar

[14] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008b). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI:10.1002/qua.21506. http://dx.doi.org/10.1002/qua.2150610.1002/qua.21506Suche in Google Scholar

[15] Davis, M. C. (2009). Chlorination of aniline and methyl carbanilate by N-chlorosuccinimide and synthesis of 1,3,5-trichlorobenzene. Synthetic Communications, 39, 1100–1108. DOI: 10.1080/00397910802499542. http://dx.doi.org/10.1080/0039791080249954210.1080/00397910802499542Suche in Google Scholar

[16] Dračínský, M., Castaño, O., Kotora, M., & Bouř, P. (2010). Rearrangement of Dewar benzene derivatives studied by DFT. Journal of Organic Chemistry, 75, 576–581. DOI:10.1021/jo902065n. http://dx.doi.org/10.1021/jo902065n10.1021/jo902065nSuche in Google Scholar

[17] Dennington, R., II, Keith, T., Millam, J., Eppinnett, K., Hovell, W. L., & Gilliland, R. (2003). GaussView 03, [computer software], University park, PA, USA: Semichem Inc. Suche in Google Scholar

[18] Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269. DOI: 10.1063/1.447079. http://dx.doi.org/10.1063/1.44707910.1063/1.447079Suche in Google Scholar

[19] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M., Gonzalez, W. C., & Pople, J. A. (2004). Gaussian 03, Revision D.02 [computer software]. Wallingford, CT, USA: Gaussian, Inc. Suche in Google Scholar

[20] Fukui, K. (1981). The path of chemical reactions — the IRC approach. Accounts of Chemical Research, 14, 363–368. DOI:10.1021/ar00072a001. http://dx.doi.org/10.1021/ar00072a00110.1021/ar00072a001Suche in Google Scholar

[21] Gaca, J., & Żak, S. (1997). Oxidative chlorination of acetanilides by metal chlorides — hydrogen peroxide in acidaqueous medium systems. Synthetic Communications, 27, 3291–3299. DOI:10.1080/00397919708004189. http://dx.doi.org/10.1080/0039791970800418910.1080/00397919708004189Suche in Google Scholar

[22] Gonzales, C., & Schlegel, H. B. (1990). Reaction path following in mass-weighted internal coordinates. Journal of Physical Chemistry, 94, 5523–5527. DOI: 10.1021/j100377a021. http://dx.doi.org/10.1021/j100377a02110.1021/j100377a021Suche in Google Scholar

[23] Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI:10.1016/s0079-6700(98)00008-2. http://dx.doi.org/10.1016/S0079-6700(98)00008-210.1016/S0079-6700(98)00008-2Suche in Google Scholar

[24] Gribble, G. W. (2003). The diversity of naturally produced organohalogens. Chemosphere, 52, 289–297. DOI: 10.1016/s0045-6535(03)00207-8. http://dx.doi.org/10.1016/S0045-6535(03)00207-810.1016/S0045-6535(03)00207-8Suche in Google Scholar

[25] Hall, W. E., Higuchi, T., Pitman, I. H., & Uekama, K. (1972). Aminolysis of acid anhydrides in water. II. Nonlinear structure-reactivity relations in the aminolyses of phthalic and succinic anhydrides. Journal of the American Chemical Society, 94, 8153–8156. DOI: 10.1021/ja00778a035. http://dx.doi.org/10.1021/ja00778a03510.1021/ja00778a035Suche in Google Scholar

[26] Hunter, K. C., & Wetmore, S. D. (2007). Environmental effects on the enhancement in natural and damaged DNA nucleobase acidity because of discrete hydrogen-bonding interactions. Journal of Physical Chemistry A, 111, 1933–1942. DOI: 10.1021/jp066641j. http://dx.doi.org/10.1021/jp066641j10.1021/jp066641jSuche in Google Scholar

[27] Jaworski, J. S., & Kalinowski, M. K. (2007). Electrochemistry of anilines. In Z. Rappoport (Ed.), The chemistry of anilines (pp. 871–926). Chichester, UK: Wiley. http://dx.doi.org/10.1002/9780470871737.ch1610.1002/9780470871737.ch16Suche in Google Scholar

[28] Kovaľchuk, E. P., Whittingham, S., Skolozdra, O. M., Zavalij, P. Y., Zavaliy, I. Yu., Reshetnyak, O. V., & Seledets, M. (2001). Co-polymers of aniline and nitroanilines. Part I. Mechanism of aniline oxidation polycondensation. Materials Chemistry and Physics, 69, 154–162. DOI: 10.1016/s0254-0584(00)00393-x. http://dx.doi.org/10.1016/S0254-0584(00)00393-X10.1016/S0254-0584(00)00393-XSuche in Google Scholar

[29] Kowalska, M., & Gaca, J. (2002). Chlorides as the potential agents contributing to formation of chloroorganic compounds in oxidation of amines. Polish Journal of Environmental Studies, 11(Supplement I), 41–44. Suche in Google Scholar

[30] Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 72, 650–654. DOI: 10.1063/1.438955. http://dx.doi.org/10.1063/1.43895510.1063/1.438955Suche in Google Scholar

[31] Król, M., Wrona, M., Page, C. S., & Bates, P. A. (2006). Macroscopic pK a calculations for fluorescein and its derivatives. Journal of Chemical Theory and Computation, 2, 1520–1529. DOI: 10.1021/ct600235y. http://dx.doi.org/10.1021/ct600235y10.1021/ct600235ySuche in Google Scholar PubMed

[32] Krygowski, T. M., Zachara, J. E., & Szatylowicz, H. (2005). Molecular geometry as a source of chemical information. Part 2—An attempt to estimate the H-bond strength: the case of p-nitrophenol complexes with bases. Journal of Physical Organic Chemistry, 18, 110–114. DOI: 10.1002/poc.875. http://dx.doi.org/10.1002/poc.87510.1002/poc.875Suche in Google Scholar

[33] Kulkarni, S. B., Joshi, S. S., & Lokhande, C. D. (2011). Facile and efficient route for preparation of nanostructured polyaniline thin films: Schematic model for simplest oxidative chemical polymerization. Chemical Engineering Journal, 166, 1179–1185. DOI:10.1016/j.cej.2010.12.032. http://dx.doi.org/10.1016/j.cej.2010.12.03210.1016/j.cej.2010.12.032Suche in Google Scholar

[34] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Suche in Google Scholar

[35] Liptak, M. D., & Shields, G. C. (2001). Accurate pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Journal of the American Chemical Society, 123, 7314–7319. DOI: 10.1021/ja010534f. http://dx.doi.org/10.1021/ja010534f10.1021/ja010534fSuche in Google Scholar

[36] MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: a new concept in conducting polymers. Synthetic Metals, 18, 285–290. DOI: 10.1016/0379-6779(87)90893-9. http://dx.doi.org/10.1016/0379-6779(87)90893-910.1016/0379-6779(87)90893-9Suche in Google Scholar

[37] MacDiarmid, A. G., Manohar, S. K., Masters, J. G., Sun, Y., Weiss, H., & Epstein, A. J. (1991). Polyaniline: Synthesis and properties of pernigraniline base. Synthetic Metals, 41, 621–626. DOI: 10.1016/0379-6779(91)91145-z. http://dx.doi.org/10.1016/0379-6779(91)91145-Z10.1016/0379-6779(91)91145-ZSuche in Google Scholar

[38] Matsuda, Y., Nishiki, T., Sakota, N., & Nakagawa, K. (1984). Anodic chlorination of aniline in N,N-dimethylformamide and N,N-dimethylacetamide. Electrochimica Acta, 29, 35–39. DOI: 10.1016/0013-4686(84)80034-1. http://dx.doi.org/10.1016/0013-4686(84)80034-110.1016/0013-4686(84)80034-1Suche in Google Scholar

[39] Mattoso, L. H. C., MacDiarmid, A. G., & Epstein, A. J. (1994). Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline). Synthetic Metals, 68, 1–11. DOI:10.1016/0379-6779(94)90140-6. http://dx.doi.org/10.1016/0379-6779(94)90140-610.1016/0379-6779(94)90140-6Suche in Google Scholar

[40] McClelland, R. A., Kahley, M. J, Davidse, P. A., & Hadzialic, G. (1996). Acid-base properties of arylnitrenium ions. Journal of the American Chemical Society, 118, 4794–4803. DOI: 10.1021/ja954248d. http://dx.doi.org/10.1021/ja954248d10.1021/ja954248dSuche in Google Scholar

[41] McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11−18. Journal of Chemical Physics, 72, 5639–5648. DOI:10.1063/1.438980. http://dx.doi.org/10.1063/1.43898010.1063/1.438980Suche in Google Scholar

[42] Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129. DOI: 10.1016/0301-0104(81)85090-2. 10.1016/0301-0104(81)85090-2Suche in Google Scholar

[43] Miertuš, S., & Tomasi, J. (1982). Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chemical Physics, 65, 239–245. DOI:10.1016/0301-0104(82)85072-6. http://dx.doi.org/10.1016/0301-0104(82)85072-610.1016/0301-0104(82)85072-6Suche in Google Scholar

[44] Palascak, M. W., & Shields, G. C. (2004). Accurate experimental values for the free energies of hydration of H+, OH−, and H3O+. Journal of Physical Chemistry A, 108, 3692–3694. DOI: 10.1021/jp049914o. http://dx.doi.org/10.1021/jp049914o10.1021/jp049914oSuche in Google Scholar

[45] Pokon, E. K., Liptak, M. D., Feldgus, S., & Shields, G. C. (2001). Comparison of CBS-QB3, CBS-APNO, and G3 predictions of gas phase deprotonation data. Journal of Physical Chemistry A, 105, 10483–10487. DOI: 10.1021/jp012920p. http://dx.doi.org/10.1021/jp012920p10.1021/jp012920pSuche in Google Scholar

[46] Pusztai, S., Pánczél, J., Dankházi, T., & Farsang, G. (2004). The electrodimerization mechanism of 2,4,6-trichloro- and tribromoanilines in unbuffered acetonitrile. Journal of Electroanalytical Chemistry, 571, 233–239. DOI:10.1016/j.jelechem.2004.04.020. http://dx.doi.org/10.1016/j.jelechem.2004.04.02010.1016/j.jelechem.2004.04.020Suche in Google Scholar

[47] Sasson, Y. (1995). Formation of carbon-halogen bonds (Cl, Br, I). In S. Patai, & Z. Rappoport (Eds.), Supplement D2. The chemistry of halides, pseudo-halides and azides, (Part 2, pp. 535–628). Chichester, UK: Wiley. http://dx.doi.org/10.1002/047002349X.ch1110.1002/047002349X.ch11Suche in Google Scholar

[48] Stein, S. E. (2011). NIST Chemistry WebBook. Retrieved October 18, 2011, from http://webbook.nist.gov/cgi/cbook.cgi?Name=2%2C4%2C6-trichloroaniline &Units=SI Suche in Google Scholar

[49] Suezawa, H., Horiike, N., Yamazaki, S., Kamachi, H., & Hirota, M. (1991). Multinuclear NMR spectroscopic studies on ionic interactions. Interactions between nitrogen cations and halide ions. Journal of Physical Chemistry, 95, 10787–10796. DOI: 10.1021/j100179a049. 10.1021/j100179a049Suche in Google Scholar

[50] Szaleniec, M., Witko, M., Tadeusiewicz, R., & Goclon, J. (2006). Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase. Journal of Computer-Aided Molecular Design, 20, 145–157. DOI: 10.1007/s10822-006-9042-6. http://dx.doi.org/10.1007/s10822-006-9042-610.1007/s10822-006-9042-6Suche in Google Scholar

[51] Szatyłowicz, H., Krygowski, T. M., & Zachara-Horeglad, J. E. (2007). Long-distance structural consequences of H-bonding. How H-bonding affects aromaticity of the ring in variously substituted aniline/anilinium/anilide complexes with bases and acids. Journal of Chemical Information and Modeling, 47, 875–886. DOI: 10.1021/ci600502w. 10.1021/ci600502wSuche in Google Scholar

[52] Tawa, G. J., Topol, I. A., Burt, S. K., Caldwell, R. A., & Rashin, A. A. (1998). Calculation of the aqueous solvation free energy of the proton. Journal of Chemical Physics, 109, 4852–4863. DOI: 10.1063/1.477096. http://dx.doi.org/10.1063/1.47709610.1063/1.477096Suche in Google Scholar

[53] Topol, I. A., Tawa, G. J., Caldwell, R. A., Eissenstat, M. A., & Burt, S. K. (2000). Acidity of organic molecules in the gas phase and in aqueous solvent. Journal of Physical Chemistry A, 104, 9619–9624. DOI: 10.1021/jp001938h. http://dx.doi.org/10.1021/jp001938h10.1021/jp001938hSuche in Google Scholar

[54] Tordeux, M., & Wakselman, C. (1995). The Bamberger reaction in hydrogen fluoride: the use of mild reductive metals for the preparation of fluoroaromatic amines. Journal of Fluorine Chemistry, 74, 251–254. DOI: 10.1016/0022-1139(95)03257-e. http://dx.doi.org/10.1016/0022-1139(95)03257-E10.1016/0022-1139(95)03257-ESuche in Google Scholar

[55] Vyas, P. V., Bhatt, A. K., Ramachandraiah, G., & Bedekar, A. V. (2003). Environmentally benign chlorination and bromination of aromatic amines, hydrocarbons and naphthols. Tetrahedron Letters, 44, 4085–4088. DOI: 10.1016/s0040-4039(03)00834-7. http://dx.doi.org/10.1016/S0040-4039(03)00834-710.1016/S0040-4039(03)00834-7Suche in Google Scholar

[56] Wei, Y., Jang, G. W., Chan, C. C., Hsueh, K. F., Hariharan, R., Patel, S. A., & Whitecar, C. K. (1990). Polymerization of aniline and alkyl ring-substituted anilines in the presence of aromatic additives. Journal of Physical Chemistry, 94, 7716–7721. DOI: 10.1021/j100382a073. http://dx.doi.org/10.1021/j100382a07310.1021/j100382a073Suche in Google Scholar

[57] Wei, Y., Tang, X., Sun, Y., & Focke, W. W. (1989). A study of the mechanism of aniline polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 27, 2385–2396. DOI:10.1002/pola.1989.080270720. http://dx.doi.org/10.1002/pola.1989.08027072010.1002/pola.1989.080270720Suche in Google Scholar

[58] Zheng, S., Xiong, Y., & Wang, J. (2010). Theoretical studies on identity SN2 reactions of lithium halide and methyl halide: A microhydration model. Journal of Molecular Modeling, 16, 1931–1937. DOI: 10.1007/s00894-010-0688-6. http://dx.doi.org/10.1007/s00894-010-0688-610.1007/s00894-010-0688-6Suche in Google Scholar PubMed

Published Online: 2012-6-22
Published in Print: 2012-7-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0163-1/pdf?lang=de
Button zum nach oben scrollen