Startseite Lebenswissenschaften Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)

  • Nguyen Loc EMAIL logo und Nguyen Giang
Veröffentlicht/Copyright: 22. Juni 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, the effects of elicitor concentration and elicitation day on the growth and asiaticoside production of centella cells were investigated. The results showed that 2-hydroxybenzoic acid from 50–200 μM and yeast extract from 2–5 g L−1 had different eliciting influences. The addition of 2-hydroxybenzoic acid and yeast extract to the cultures strongly enhanced asiaticoside production in centella cells. The increase in asiaticoside content induced by the addition of 100 μM of 2-hydroxybenzoic acid and 4 g L−1 of yeast extract at day 10 of inoculation was about 5- and 3.5-fold, respectively, as compared with that of the reference cells. In general, 2-hydroxybenzoic acid (abiotic elicitor) was more effective in enhancing asiaticoside biosynthesis than yeast extract (biotic elicitor).

[1] Ajungla, L., Patil, P. P., Barmukh, R. B., & Nikam, T. D. (2009). Influence of biotic and abiotic elicitors on accumulation of hyoscyamine and scopolamine in root cultures of Datura metel L. Indian Journal of Biotechnology, 8, 317–322. Suche in Google Scholar

[2] Aoyagi, H., Kobayashi, Y., Yamada, K., Yokoyama, M., Kusakari, K., & Tanaka, H. (2001). Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Applied Microbiology and Biotechnology, 57, 482–488. DOI: 10.1007/s002530100819. http://dx.doi.org/10.1007/s00253010081910.1007/s002530100819Suche in Google Scholar PubMed

[3] Bonfill, M., Mangas, S., Moyano, E., Cusido, R. M., & Palazon, J. (2011). Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell, Tissue and Organ Culture, 104, 61–67. DOI: 10.1007/s11240-010-9804-7. http://dx.doi.org/10.1007/s11240-010-9804-710.1007/s11240-010-9804-7Suche in Google Scholar

[4] Hernandez-Vazquez, L., Bonfill, M., Moyano, E., Cusido, R. M., Navarro-Ocaña, A., & Palazon, J. (2010). Conversion of α-amyrin into centellosides by plant cell cultures of Centella asiatica. Biotechnology Letters, 32, 315–319. DOI: 10.1007/s10529-009-0143-x. http://dx.doi.org/10.1007/s10529-009-0143-x10.1007/s10529-009-0143-xSuche in Google Scholar PubMed

[5] Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M., & Glazebrook, J. (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 96, 13583–13588. DOI: 10.1073/pnas.96.23.13583. http://dx.doi.org/10.1073/pnas.96.23.1358310.1073/pnas.96.23.13583Suche in Google Scholar PubMed PubMed Central

[6] Khalili, M., Hasanloo, T., Tabar, S. K. K., & Rahnama, H. (2009). Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum. Cell Biology International, 33, 988–994. DOI: 10.1016/j.cellbi.2009.06.003. http://dx.doi.org/10.1016/j.cellbi.2009.06.00310.1016/j.cellbi.2009.06.003Suche in Google Scholar PubMed

[7] Kim, O. T., Bang, K. H., Shin, Y. S., Lee, M. J., Jung, S. J., Hyun, D. Y., Kim, Y. C., Seong, N. S., Cha, S. W., & Hwang, B. (2007). Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Reports, 26, 1941–1949. DOI: 10.1007/s00299-007-0400-1. http://dx.doi.org/10.1007/s00299-007-0400-110.1007/s00299-007-0400-1Suche in Google Scholar PubMed

[8] Kim, O. T., Kim, M. Y., Hong, M. H., Ahn, J. C., & Hwang, B. (2004a). Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) Urban by elicitors. Plant Cell Reports, 23, 339–344. DOI: 10.1007/s00299-004-0826-7. http://dx.doi.org/10.1007/s00299-004-0826-710.1007/s00299-004-0826-7Suche in Google Scholar PubMed

[9] Kim, Y. S., Hahn, E. J., Murthy, H. N., & Paek, K. Y. (2004b). Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnology Letters, 26, 1619–1622. DOI: 10.1007/s10529-004-3183-2. http://dx.doi.org/10.1007/s10529-004-3183-210.1007/s10529-004-3183-2Suche in Google Scholar PubMed

[10] Kováčik, J., Grúz, J., Bačkor, M., Strnad, M., & Repčák, M. (2009). Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28, 135–143. DOI: 10.1007/s00299-008-0627-5. http://dx.doi.org/10.1007/s00299-008-0627-510.1007/s00299-008-0627-5Suche in Google Scholar PubMed

[11] Loc, N. H., & An, N. T. T. (2010). Asiaticoside production from centella (Centella asiatica L. Urban) cell culture. Biotechnology and Bioprocess Engineering, 15, 1065–1070. DOI: 10.1007/s12257-010-0061-8. http://dx.doi.org/10.1007/s12257-010-0061-810.1007/s12257-010-0061-8Suche in Google Scholar

[12] Lu, M., Wong, H., & Teng, W. (2001). Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Reports, 20, 674–677. DOI: 10.1007/s002990100378. 10.1007/s002990100378Suche in Google Scholar

[13] Mangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., Piñol, M. T., & Palazon, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67, 2041–2049. DOI: 10.1016/j.phytochem.2006.06.025. http://dx.doi.org/10.1016/j.phytochem.2006.06.02510.1016/j.phytochem.2006.06.025Suche in Google Scholar

[14] Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xSuche in Google Scholar

[15] Mustafa, N. R., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics. Biotechnology Letters, 31, 1967–1974. DOI: 10.1007/s10529-009-0107-1. http://dx.doi.org/10.1007/s10529-009-0107-110.1007/s10529-009-0107-1Suche in Google Scholar

[16] Ogata, A., Tsuruga, A., Matsuno, M., & Mizukami, H. (2004). Elicitor-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures: Activities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnology, 21, 393–396. http://dx.doi.org/10.5511/plantbiotechnology.21.39310.5511/plantbiotechnology.21.393Suche in Google Scholar

[17] Ramachandra Rao, S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101–153. DOI: 10.1016/s0734-9750(02)00007-1. http://dx.doi.org/10.1016/S0734-9750(02)00007-110.1016/S0734-9750(02)00007-1Suche in Google Scholar

[18] Roat, C., & Ramawat, K. G. (2009). Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnology Reports, 3, 135–138. DOI: 10.1007/s11816-009-0082-y. http://dx.doi.org/10.1007/s11816-009-0082-y10.1007/s11816-009-0082-ySuche in Google Scholar

[19] Skopińska-Różewska, E., Sommer, E., Sokolnicka, I., Bany, J., Guzewska, J., & Furmanowa, M. (2002) The effect of Centella asiatica, Echinacea purpurea and Melaleuca alternifolia on cellular immunity in mice. Central European Journal of Immunology, 27, 142–148. Suche in Google Scholar

[20] Sritularak, B., Juengwatanatrakul, T., Putalun, W., Tanaka, H., & Morimoto, S. (2012). A rapid one-step immunochromatographic assay for the detection of asiaticoside. Journal of Natural Medicines, 66, 279–283. DOI: 10.1007/s11418-011-0582-2. http://dx.doi.org/10.1007/s11418-011-0582-210.1007/s11418-011-0582-2Suche in Google Scholar PubMed

[21] Thanh, N. T., Murthy, H. N., Yu, K.W., Hahn, E. J., & Paek, K. Y. (2005). Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Applied Microbiology and Biotechnology, 67, 197–201. DOI: 10.1007/s00253-004-1759-3. http://dx.doi.org/10.1007/s00253-004-1759-310.1007/s00253-004-1759-3Suche in Google Scholar PubMed

[22] Tsuruga, A., Terasaka, K., Kamiya, K., Satake, T., & Mizukami, H. (2006). Elicitor-induced activity of isorinic acid 3′-hydroxylase, an enzyme catalyzing the final step of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Biotechnology, 23, 297–301. http://dx.doi.org/10.5511/plantbiotechnology.23.29710.5511/plantbiotechnology.23.297Suche in Google Scholar

[23] Wang, Y. D., Yuan, Y. J., & Wu, J. C. (2004). Induction studies of methyl jasmonate and salicylic acid on taxane production in suspension cultures of Taxus chinensis var. mairei. Biochemical Engineering Journal, 19, 259–265. DOI: 10.1016/j.bej.2004.02.006. http://dx.doi.org/10.1016/j.bej.2004.02.00610.1016/j.bej.2004.02.006Suche in Google Scholar

[24] Yoo, N. H., Kim, O. T., Kim, J. B., Kim, S. H., Kim, Y. C., Bang, K. H., Hyun, D.Y., Cha, S.W., Kim, M.Y., & Hwang, B. (2011). Enhancement of centelloside production from cultured plants of Centella asiatica by combination of thidiazuron and methyl jasmonate. Plant Biotechnology Reports, 5, 283–287. DOI: 10.1007/s11816-011-0173-4. http://dx.doi.org/10.1007/s11816-011-0173-410.1007/s11816-011-0173-4Suche in Google Scholar

[25] Yousefzadi, M., Sharifi, M., Behmanesh, M., Ghasempour, A., Moyano, E., & Palazon, J. (2010). Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnology Letters, 32, 1739–1743. DOI: 10.1007/s10529-010-0343-4. http://dx.doi.org/10.1007/s10529-010-0343-410.1007/s10529-010-0343-4Suche in Google Scholar PubMed

[26] Zhang, W., & Furusaki, S. (1999). Production of anthocyanins by plant cell cultures. Biotechnology and Bioprocess Engineering, 4, 231–252. DOI: 10.1007/bf02933747. http://dx.doi.org/10.1007/BF0293374710.1007/BF02933747Suche in Google Scholar

[27] Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333. DOI: 10.1016/j.biotechadv.2005.01.003. http://dx.doi.org/10.1016/j.biotechadv.2005.01.00310.1016/j.biotechadv.2005.01.003Suche in Google Scholar PubMed

Published Online: 2012-6-22
Published in Print: 2012-7-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0168-9/html
Button zum nach oben scrollen