Home Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen
Article
Licensed
Unlicensed Requires Authentication

Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen

  • Nahla Zanina EMAIL logo , Soumaya Haddad , Ali Othmane , Thierry Jouenne , David Vaudry , Mina Souiri and Laurence Mora
Published/Copyright: April 5, 2012
Become an author with De Gruyter Brill

Abstract

The seeding of endothelial cells on biomaterial surfaces has become a major challenge to achieve better haemocompatibility of these surfaces. Multilayers of polyelectrolytes formed by the layerby-layer method are promising in this respect. In this study, the interactions of endothelial cells with multilayered polyelectrolytes films were investigated. The build-ups were prepared by selfassembled alternatively adsorbed polyanions and polycations functionalised with fibronectin and collagen. Anionic poly(sodium 4-styrenesulfonate) and cationic poly(allylamine hydrochloride) polyelectrolytes were chosen as a model system. Elaborated surfaces were characterised by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode showed good reversible electrochemical properties and high stability in an electrolyte solution. The film ohmic resistance was highest when the film was coated with fibronectin; the parameters so determined were correlated with atomic force microscopy images. Cell colorimetric assay (WST-1) and immunofluorescence were used to quantify the cell viability and evaluate the adhesion properties. When cultured on a surface where proteins were deposited, cells adhered and proliferated better with fibronectin than with collagen. In addition, a high surface free energy was favourable to adhesion and proliferation (48.8 mJ m−2 for fibronectin and 39.7 mJ m−2 for collagen, respectively). Endothelial cells seeded on functionalised-polyelectrolyte multilayer films showed a good morphology and adhesion necessary for the development of a new endothelium.

[1] Albelda, S. M. (1993). Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Laboratory Investigation, 68, 4–17. Search in Google Scholar

[2] Bery, M. N., & Grivell, M. B. (1995). An electrochemical description of metabolism. In D. Walz, H. Berry, & G. Milazzo (Eds.), Bioelectrochemistry of cells and tissues (pp. 134–158). Basel, Switzerland: Birkhauser Verlag. http://dx.doi.org/10.1007/978-3-0348-9063-2_410.1007/978-3-0348-9063-2_4Search in Google Scholar

[3] Borghol, N., Mora, L., Sakly, N., Lejeune, P., Jouenne, T., Jaffrézic-Renault, N., & Othmane, A. (2011). Electrochemical monitoring of chlorhexidine digluconate effect on polyelectrolyte immobilized bacteria and kinetic cell adhesion. Journal of Biotechnology, 151, 114–121. DOI: 10.1016/j.jbiotec.2010.11.014. http://dx.doi.org/10.1016/j.jbiotec.2010.11.01410.1016/j.jbiotec.2010.11.014Search in Google Scholar

[4] Bouafsoun, A., Othmane, A., Kerkeni, A., Jaffrézic, N., & Ponsonnet, L. (2006). Evaluation of endothelial cell ad herence onto collagen and fibronectin: A comparison between jet impingement and flow chamber techniques. Materials Science and Engineering: C, 26, 260–266. DOI: 10.1016/j.msec.2005.10.051. http://dx.doi.org/10.1016/j.msec.2005.10.05110.1016/j.msec.2005.10.051Search in Google Scholar

[5] Bouafsoun, A., Ponsonnet, L., Kerkeni, A., Jaffrézic, N., & Othmane, A. (2007). Comparative wettability study of polystyrene functionalized with different proteins. Materials Science and Engineering: C, 27, 709–715. DOI: 10.1016/j.msec.2006.06.038. http://dx.doi.org/10.1016/j.msec.2006.06.03810.1016/j.msec.2006.06.038Search in Google Scholar

[6] Boura, C., Menu, P., Payan, E., Picart, C., Voegel, J. C., Muller, S., & Stoltz, J. F. (2003). Endothelial cells grown on thin polyelectrolyte multilayered films: an evaluation of a new versatile surface modification. Biomaterials, 24, 3521–3530. DOI: 10.1016/s0142-9612(03)00214-x. http://dx.doi.org/10.1016/S0142-9612(03)00214-X10.1016/S0142-9612(03)00214-XSearch in Google Scholar

[7] Boura, C., Muller, S., Vautier, D., Dumas, D., Schaaf, P., Voegel, J. C., Stoltz, J. F., & Menu, P. (2005). Endothelial cell-interactions with polyelectrolyte multilayer films. Biomaterials, 26, 4568–4575. DOI: 10.1016/j.biomaterials.2004.11.036. http://dx.doi.org/10.1016/j.biomaterials.2004.11.03610.1016/j.biomaterials.2004.11.036Search in Google Scholar

[8] Bowlin, G. L., & Rittgers, S. E. (1997). Electrostatic endothelial cell seeding of small diameter (<6 mm) vascular prostheses: Feasibility testing. Cell Transplantation, 6, 623–629. DOI: 10.1016/s0963-6897(97)00096-1. http://dx.doi.org/10.1016/S0963-6897(97)00096-110.1016/S0963-6897(97)00096-1Search in Google Scholar

[9] Chluba, J., Voegel, J. C., Decher, G., Erbacher, P., Schaaf, P., & Ogier, J. (2001). Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules, 2, 800–805. DOI: 10.1021/bm015529i. http://dx.doi.org/10.1021/bm015529i10.1021/bm015529iSearch in Google Scholar PubMed

[10] Gammoudi, I., Tarbague, H., Othmane, A., Moynet, D., Rebi`ere, D., Kalfat, R., & Dejous, C. (2010). Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosensors and Bioelectronics, 26, 1723–1726. DOI: 10.1016/j.bios.2010.07.118. http://dx.doi.org/10.1016/j.bios.2010.07.11810.1016/j.bios.2010.07.118Search in Google Scholar PubMed

[11] Haddad, S., Derkaoui, S. M., Avramoglou, T., Ait, E., Othmane, A., & Mora, L. (2011a). Electrochemical impedance spectroscopy as a highly sensitive tool for a dynamic interaction study between heparin and antithrombin: A novel antithrombin sensor. Talanta, 85, 927–935. DOI: 10.1016/j.talanta.2011.04.079. http://dx.doi.org/10.1016/j.talanta.2011.04.07910.1016/j.talanta.2011.04.079Search in Google Scholar PubMed

[12] Haddad, S., Zanina, N., Othmane, A., & Mora, L. (2011b). Polyurethane films modified by antithrombin-heparin complex to enhance endothelialization: An original impedimetric analysis. Electrochimica Acta, 56, 7303–7311. DOI: 10.1016/j.electacta.2011.06.048. http://dx.doi.org/10.1016/j.electacta.2011.06.04810.1016/j.electacta.2011.06.048Search in Google Scholar

[13] Ladam, G., Gergely, C., Senger, B., Decher, G., Voegel, J. C., Schaaf, P., & Cuisinier, F. J. G. (2000). Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers. Biomacromolecules, 1, 674–687. DOI: 10.1021/bm005572q. http://dx.doi.org/10.1021/bm005572q10.1021/bm005572qSearch in Google Scholar

[14] Müller, M., Rieser, T., Dublin, P. L., & Lunkwitz, K. (2001). Selective interaction between proteins and the outermost surface of polyelectrolyte multilayers: influence of the polyanion type, pH and salt. Macromolecular Rapid Communications, 22, 390–395. DOI: 10.1002/1521-3927(20010301)22:6〈390:: AID-MARC390〉3.0.CO;2-B. http://dx.doi.org/10.1002/1521-3927(20010301)22:6<390::AID-MARC390>3.0.CO;2-B10.1002/1521-3927(20010301)22:6<390::AID-MARC390>3.0.CO;2-BSearch in Google Scholar

[15] Nonner, W., & Eisenberg, B. (2000). Electrodiffusion in ionic channels of biological membranes. Journal of Molecular Liquids, 87, 149–162. DOI: 10.1016/s0167-7322(00)00118-5. http://dx.doi.org/10.1016/S0167-7322(00)00118-510.1016/S0167-7322(00)00118-5Search in Google Scholar

[16] Picart, C., Lavalle, P., Hubert, P., Cuisinier, F. J. G., Decher, G., Schaaf, P., & Voegel, J. C. (2001). Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir, 17, 7414–7424. DOI: 10.1021/la010848g. http://dx.doi.org/10.1021/la010848g10.1021/la010848gSearch in Google Scholar

[17] Picart, C., Senge, B., Sengupta, K., Dubreuil, F., & Fery, A. (2007). Measuring mechanical properties of polyelectrolyte multilayer thin films: Novel methods based on AFM and optical techniques. Colloids and surfaces A: Physicochemical and Engineering Aspects, 303, 30–36. DOI: 10.1016/j.colsurfa.2007.02.015. http://dx.doi.org/10.1016/j.colsurfa.2007.02.01510.1016/j.colsurfa.2007.02.015Search in Google Scholar

[18] Ponsonnet, L., Comte, V., Othmane, A., Lagneau, C., Charbonnier, M., Lissac, M., & Jaffrezic, N. (2002). Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates. Materials Science and Engineering: C, 21, 157–165. DOI: 10.1016/s0928-4931(02)00097-8. http://dx.doi.org/10.1016/S0928-4931(02)00097-810.1016/S0928-4931(02)00097-8Search in Google Scholar

[19] Ponsonnet, L., Reybier, K., Jaffrezic, N., Comte, V., Lagneau, C., Lissac, M., & Martelet, C. (2003). Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behavior. Materials Science and Engineering: C, 23, 551–560. DOI: 10.1016/s0928-4931(03)00033-x. http://dx.doi.org/10.1016/S0928-4931(03)00033-X10.1016/S0928-4931(03)00033-XSearch in Google Scholar

[20] Schultz, P., Vautier, D., Richert, L., Jessel, N., Haikel, Y., Schaaf, P., Voegel, J. C., Ogier, J., & Debry, C. (2005). Polyelectrolyte multilayers functionalized by a synthetic analogue of an anti-inflammatory peptide, α-MSH, for coating a tracheal prosthesis. Biomaterials, 26, 2621–2630. DOI: 10.1016/j.biomaterials.2004.06.049. http://dx.doi.org/10.1016/j.biomaterials.2004.06.04910.1016/j.biomaterials.2004.06.049Search in Google Scholar

[21] Seifalian, A. M., Tiwari, A., Hamilton, G., & Salacinski, H. J. (2002). Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artificial Organs, 26, 307–320. DOI: 10.1046/j.1525-1594.2002.06841.x. http://dx.doi.org/10.1046/j.1525-1594.2002.06841.x10.1046/j.1525-1594.2002.06841.xSearch in Google Scholar

[22] Şenel, M., Coşkun, A., Fatih Abasıyanık, M., & Bozkurt, A. (2010). Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network. Chemical Papers, 64, 1–7. DOI: 10.2478/s11696-009-0103-x. http://dx.doi.org/10.2478/s11696-009-0103-x10.2478/s11696-009-0103-xSearch in Google Scholar

[23] Tryoen-Tóth, P., Vautier, D., Haikel, Y., Voegel, J. C., Shaaf, P., Chluba, J., & Ogier, J. (2002). Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. Journal of Biomedical Materials Research, 60, 657–667. DOI: 10.1002/jbm.10110. http://dx.doi.org/10.1002/jbm.1011010.1002/jbm.10110Search in Google Scholar

[24] Turner, M. R. (1992). Electrical resistances of cultured bovine arterial endothelium in solutions of various resistivities. Experimental Physiology, 77, 741–748. 10.1113/expphysiol.1992.sp003640Search in Google Scholar

[25] van Loosdrecht, M. C., Lyklema, J., Norde, W., & Zehnder, A. J. (1990). Influence of interfaces on microbial activity. Microbiology and Molecular Biology Reviews, 54, 75–87. 10.1128/mr.54.1.75-87.1990Search in Google Scholar

[26] van Oss, C. J. (1995). Interfacial forces in aqueous media. New York, NY, USA: Marcel Dekker. Search in Google Scholar

[27] van Oss, C. J. (1997). Hydrophobicity and hydrophilicity of biosurfaces. Current Opinion in Colloid & Interface Science, 2, 503–512. DOI: 10.1016/s1359-0294(97)80099-4. http://dx.doi.org/10.1016/S1359-0294(97)80099-410.1016/S1359-0294(97)80099-4Search in Google Scholar

[28] van Oss, C. J., Chaudhury, M. K., & Good, R. J. (1989a). The mechanism of phase separation of polymers in organic media-apolar and polar systems. Separation Sciences and Technology, 24, 15–30. DOI: 10.1080/01496398908049748. http://dx.doi.org/10.1080/0149639890804974810.1080/01496398908049748Search in Google Scholar

[29] van Oss, C. J., Ju, L., Chaudhury, M. K., & Good, R. J. (1989b). Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. Journal of Colloid and Interface Science, 128, 313–319. DOI: 10.1016/0021-9797(89)90345-7. http://dx.doi.org/10.1016/0021-9797(89)90345-710.1016/0021-9797(89)90345-7Search in Google Scholar

[30] Vautier, D., Karsten, V., Egles, C., Chluba, J., Schaaf, P., Voegel, J. C., & Ogier, J. (2002). Polyelectrolyte multilayer films modulate cytoskeletal organization in chondrosarcoma cells. Journal of Biomaterials Science, Polymer Edition, 13, 712–731. DOI: 10.1163/156856202320269175. http://dx.doi.org/10.1163/15685620232026917510.1163/156856202320269175Search in Google Scholar PubMed

[31] Velzenberger, E., El Kirat, K., Legeay, G., Nagel, M. D., & Pezron, I. (2009). Characterization of biomaterials polar interactions in physiological conditions using liquid-liquid contact angle measurements: Relation to fibronectin adsorption. Colloids and Surfaces B: Biointerfaces, 68, 238–244. DOI: 10.1016/j.colsurfb.2008.10.022. http://dx.doi.org/10.1016/j.colsurfb.2008.10.02210.1016/j.colsurfb.2008.10.022Search in Google Scholar PubMed

[32] Vodouhê, C., Schmittbuhl, M., Boulmedais, F., Bagnard, D., Vautier, D., Schaaf, P., Egles, C., Voegel, J. C., & Ogier, J. (2005). Effect of fonctionnalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials, 26, 545–554. DOI: 10.1016/j.biomaterials.2004.02.057. http://dx.doi.org/10.1016/j.biomaterials.2004.02.05710.1016/j.biomaterials.2004.02.057Search in Google Scholar PubMed

[33] Vuori, K. (1998). Integrin signaling: Tyrosine phosphorylation events in focal adhesions. Journal of Membrane Biology, 165, 191–199. DOI: 10.1007/s002329900433. http://dx.doi.org/10.1007/s00232990043310.1007/s002329900433Search in Google Scholar PubMed

[34] Waldeck, H., & Kao, W. J. (2008). Extended interaction of β1 integrin subunit-deficient cells (GD25) with surfaces modified with fibronectin-derived peptides: Culture optimization, adhesion and cytokine panel studies. Acta Biomaterialia, 4, 1172–1186. DOI: 10.1016/j.actbio.2008.03.020. http://dx.doi.org/10.1016/j.actbio.2008.03.02010.1016/j.actbio.2008.03.020Search in Google Scholar PubMed PubMed Central

[35] Wang, C. H., Luo, C. W., Huang, C. F., Huang, M. S., Ou, K. L., & Yu, C. H. (2011). Biocompatibility of metal carbides on Fe-Al-Mn-based alloys. Journal of Alloys and Compounds, 509, 691–696. DOI: 10.1016/j.jallcom.2010.06.071. http://dx.doi.org/10.1016/j.jallcom.2010.06.07110.1016/j.jallcom.2010.06.071Search in Google Scholar

[36] Xi, F., Gao, J., Wang, J., & Wang, Z. (2011). Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. Journal of Electroanalytical Chemistry, 656, 252–257. DOI: 10.1016/j.jelechem.2010.10.025. http://dx.doi.org/10.1016/j.jelechem.2010.10.02510.1016/j.jelechem.2010.10.025Search in Google Scholar

[37] Zhang, P., Qian, J., Yang, Y., An, Q., Liu, X., & Gui, Z. (2008). Polyelectrolyte layer-by-layer self-assembly enhanced by electric field and their multilayer membranes for separating isopropanol-water mixtures. Journal of Membrane Science, 320, 73–77. DOI: 10.1016/j.memsci.2008.03.055. http://dx.doi.org/10.1016/j.memsci.2008.03.05510.1016/j.memsci.2008.03.055Search in Google Scholar

[38] Zhu, Y., & Sun, Y. (2004). The influence of polyelectrolyte charges of polyurethane membrane surface on the growth of human endothelial cells. Colloids and Surfaces B: Biointerfaces, 36, 49–55. DOI: 10.1016/j.colsurfb.2004.04.008. http://dx.doi.org/10.1016/j.colsurfb.2004.04.00810.1016/j.colsurfb.2004.04.008Search in Google Scholar PubMed

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0141-7/pdf?lang=en
Scroll to top button