Abstract
Influence of model complexity on the separation equipment performance was investigated. As an example, separation of azeotrope formed by 2-methoxy-2-methylpropane and methanol was considered using butan-1-ol as an extractive solvent. Non-equilibrium model of a column for extractive distillation accounting for the mass and heat transfer rates was composed according to the rigorous Maxwell-Stefan theory. An empirical AICHE correlation was adopted for the calculation of binary mass transfer coefficients at column trays. Results of the column steady-state operation were compared with those obtained assuming different equilibrium models. Effect of the quality of the vapor-liquid equilibrium (VLE) description on the results of the separation simulation considering real behavior of either liquid or both equilibrium phases was tested. Real behavior of the liquid phase was computed according to the NRTL equation taking into account binary and, in some cases, also ternary equilibrium data. In case of real behavior of the vapor phase, the equation of state in the form of virial expansion was employed. Qualitative agreement was found comparing the simulation results calculated by equilibrium and non-equilibrium models of the extractive distillation column while using the same description of ternary VLE.
[1] AICHE (1958). Bubble tray design manual. New York, NY, USA: AIChE. Suche in Google Scholar
[2] Arce, A., Martínez-Ageitos, J., Rodil, E., & Soto, A. (2000). Phase equilibria involved in extractive distillation of 2-methoxy-2-methylpropane+methanol using 1-butanol as entrainer. Fluid Phase Equilibria, 171, 207–218. DOI: 10.1016/s0378-3812(00)00364-2. http://dx.doi.org/10.1016/S0378-3812(00)00364-210.1016/S0378-3812(00)00364-2Suche in Google Scholar
[3] Arce, A., Martínez-Ageitos, J., Rodil, E., & Soto, A. (2001). Thermophysical properties for 1-butanol+ethanol+2-methoxy-2-methylbutane ternary system. Fluid Phase Equilibria, 187–188, 155–169. DOI: 10.1016/s0378-3812(01)00529-5. http://dx.doi.org/10.1016/S0378-3812(01)00529-510.1016/S0378-3812(01)00529-5Suche in Google Scholar
[4] Arce, A., Martínez-Ageitos, J., & Soto, A. (1996). VLE measurements of ninary mixtures of methanol, ethanol, 2-methoxy-2-methylpropane, and 2-methoxy-2-methylbutane at 101.32 kPa. Journal of Chemical and Engineering Data, 41, 718–723. DOI: 10.1021/je950323o. http://dx.doi.org/10.1021/je950323o10.1021/je950323oSuche in Google Scholar
[5] Arce, A., Rodil, E., & Soto, A. (1999). Extractive distillation of 2-methoxy-2-methylpropane + ethanol using 1-butanol as entrainer: Equilibria and simulation. The Canadian Journal of Chemical Engineering, 77, 1135–1140. DOI: 10.1002/cjce.5450770608. http://dx.doi.org/10.1002/cjce.545077060810.1002/cjce.5450770608Suche in Google Scholar
[6] Chauvel, A., & Lefebvre, G. (1989). Petrochemical processes: Synthesis-gas derivatives and major hydrocarbons (Vol. 1, Chapter 3, pp. 212–214). Paris, France: éditions Technip. Suche in Google Scholar
[7] Chen, F. R., Huss, R. S., Malone, M. F., & Doherty, M. F. (2000). Simulation of kinetic effects in reactive distillation. Computers and Chemical Engineering, 24, 2457–2472. DOI: 10.1016/s0098-1354(00)00609-8 http://dx.doi.org/10.1016/S0098-1354(00)00609-810.1016/S0098-1354(00)00609-8Suche in Google Scholar
[8] Doherty, M. F., & Malone, M. F. (2001). Conceptual design of distillation systems (Chapter 5, pp. 183–256). New York, NY, USA: McGraw-Hill. Suche in Google Scholar
[9] Gentry, J. C., Kumar, S., & Wright-Wytcherley, R. (2004). Use extractive distillation to simplify petrochemical processes. Hydrocarbon Processing, 83(6), 62. Suche in Google Scholar
[10] Gmehling, J., Menke, J., Krafczyk, J., & Fischer, K. (2004). Azeotropic data (2nd ed., pp. 216–217). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar
[11] Gmehling, J., & Onken, U, (2003). Vapor-liquid equilibrium data collection (Vol. I, 1c, pp. 625–630). Frankfurt/Main, Germany: DECHEMA. Suche in Google Scholar
[12] Graczová, E., Steltenpohl, P., & Bafrncová, S. (2005). Extractive distillation: Prediction of the vapour-liquid equilibrium data of multi-component systems. In J. Klemeš (Ed.), Chemical Engineering Transactions (Vol. 7, pp. 339–344). Milano, Italy: AIDIC. Suche in Google Scholar
[13] Graczová, E., Steltenpohl, P., Chlebovec, M., & Labovsky, J. (2009). Improvement of accuracy of the multicomponent vapor-liquid equilibria prediction for the purpose of separation process modelling. In J. Klemeš (Ed.), Chemical Engineering Transactions (Vol. 18, pp. 207–212). Milano, Italy: AIDIC. DOI: 10.3303/cet0918032. Suche in Google Scholar
[14] Hömmerich, U., & Rautenbach, R. (1998). DDesign and optimization of combined pervaporation/distillation processes for the production of MTBE. Journal of Membrane Science, 146, 53–64. DOI: 10.1016/s0376-7388(98)00085-4. http://dx.doi.org/10.1016/S0376-7388(98)00085-410.1016/S0376-7388(98)00085-4Suche in Google Scholar
[15] Krishna, R., & Wesselingh, J. A. (1997). The Maxwell-Stefan approach to mass transfer. Chemical Engineering Science, 52, 861–911. DOI: 10.1016/s0009-2509(96)00458-7. http://dx.doi.org/10.1016/S0009-2509(96)00458-710.1016/S0009-2509(96)00458-7Suche in Google Scholar
[16] Krishnamurthy, R., & Taylor, R. (1985a). A nonequilibrium stage model of multicomponent separation processes. Part I: Model description and method of solution. AIChE Journal, 31, 449–456. DOI: 10.1002/aic.690310312. http://dx.doi.org/10.1002/aic.69031031210.1002/aic.690310312Suche in Google Scholar
[17] Krishnamurthy, R., & Taylor, R. (1985b). A nonequilibrium stage model of multicomponent separation processes. Part II: Comparison with experiment. AIChE Journal, 31, 456–465. DOI: 10.1002/aic.690310313. http://dx.doi.org/10.1002/aic.69031031310.1002/aic.690310313Suche in Google Scholar
[18] Peters, M., Glasser, D., Hildebrandt, D., & Kauchali, S. (2011). Membrane process design using residue curve maps (Chapter 8, pp. 151–167). Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/978047091003010.1002/9780470910030Suche in Google Scholar
[19] Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids (5th ed.). New York, NY, USA: McGraw-Hill. Suche in Google Scholar
[20] Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AICHE Journal, 14, 135–144. DOI: 10.1002/aic.690140124. http://dx.doi.org/10.1002/aic.69014012410.1002/aic.690140124Suche in Google Scholar
[21] Rodriguez-Donis, I., Gerbaud, V., & Joulia, X. (2009). Thermodynamic insights on the feasibility of homogeneous batch extractive distillation, 1. Azeotropic mixtures with a heavy entrainer. Industrial & Engineering Chemistry Research, 48, 3544–3559. DOI: 10.1021/ie801060n. http://dx.doi.org/10.1021/ie801060n10.1021/ie801060nSuche in Google Scholar
[22] Steltenpohl, P., & Graczová, E. (2010). Application of extended NRTL equation for ternary liquid-liquid and vapor-liquid-liquid equilibria description. Chemical Papers, 64, 310–317. DOI: 10.2478/s11696-010-0006-x. http://dx.doi.org/10.2478/s11696-010-0006-x10.2478/s11696-010-0006-xSuche in Google Scholar
[23] Steltenpohl, P., Chlebovec, M., & Graczová, E. (2005). Simulation of toluene extractive distillation from a mixture with heptane. Chemical Papers, 59, 421–427. Suche in Google Scholar
[24] Steltenpohl, P., Graczová, E., & Chlebovec, M. (2009). Extractive distillation of C7 hydrocarbon mixture in the presence of furfural. In J. Klemeš (Ed.), Chemical Engineering Transactions (Vol. 18, pp. 201–206). Milano, Italy: AIDIC. DOI: 10.3303/cet0918031. Suche in Google Scholar
[25] Streicher, C., Asselineau, L., & Forestičre, A. (1995). Separation of alcohol/ether/hydrocarbon mixtures in industrial etherification processes for gasoline production. Pure and Applied Chemistry, 67, 985–992. DOI: 10.1351/pac199567060985. http://dx.doi.org/10.1351/pac19956706098510.1351/pac199567060985Suche in Google Scholar
[26] Surový, J., Dojčanský, J., & Bafrncová, S. (1982). Some information on calculating the liquid-liquid equilibrium of ternary systems. Collection of Czechoslovak Chemical Communications, 47, 1420–1432. http://dx.doi.org/10.1135/cccc1982142010.1135/cccc19821420Suche in Google Scholar
[27] Švandová, Z., Kotora, M., Markoš J., & Jelemenský, Ľ. (2006). Dynamic behaviour of a CSTR with reactive distillation. Chemical Engineering Journal, 119, 113–120. DOI: 10.1016/j.cej.2006.03.032. http://dx.doi.org/10.1016/j.cej.2006.03.03210.1016/j.cej.2006.03.032Suche in Google Scholar
[28] Švandová, Z., Markoš, J., & Jelemenský, Ľ. (2006). Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models. Chemical Papers, 60, 432–440. DOI: 10.2478/s11696-006-0079-8. http://dx.doi.org/10.2478/s11696-006-0079-810.2478/s11696-006-0079-8Suche in Google Scholar
[29] Taylor, R., & Krishna, R. (1993). Multicomponent mass transfer. New York, NY, USA: Wiley. Suche in Google Scholar
[30] Tsonopoulos, C. (1974). An empirical correlation of second virial coefficients. AIChE Journal, 20, 263–272. DOI: 10.1002/aic.690200209. http://dx.doi.org/10.1002/aic.69020020910.1002/aic.690200209Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Mathematical model of aerobic stabilization of old landfills
- Investigation of kinetics of anaerobic digestion of Canary grass
- Extractive distillation modeling of the ternary system 2-methoxy-2-methylpropane-methanol-butan-1-ol
- Agitation of a gas-solid-liquid system in a vessel with high-speed impeller and vertical tubular coil
- Experimental analysis of the hydrodynamics of a three-phase system in a vessel with two impellers
- Influence of the ionic form of a cation-exchange adsorbent on chromatographic separation of galactooligosaccharides
- Mixed oxides of transition metals as catalysts for total ethanol oxidation
- Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion
- Oxidation of ammonia using modified TiO2 catalyst and UV-VIS irradiation
- Antioxidant potential and authenticity of some commercial fruit juices studied by EPR and IRMS
- Etching and recovery of gold from aluminum substrate in thiourea solution
Artikel in diesem Heft
- Mathematical model of aerobic stabilization of old landfills
- Investigation of kinetics of anaerobic digestion of Canary grass
- Extractive distillation modeling of the ternary system 2-methoxy-2-methylpropane-methanol-butan-1-ol
- Agitation of a gas-solid-liquid system in a vessel with high-speed impeller and vertical tubular coil
- Experimental analysis of the hydrodynamics of a three-phase system in a vessel with two impellers
- Influence of the ionic form of a cation-exchange adsorbent on chromatographic separation of galactooligosaccharides
- Mixed oxides of transition metals as catalysts for total ethanol oxidation
- Speciation of heavy metals in sewage sludge after mesophilic and thermophilic anaerobic digestion
- Oxidation of ammonia using modified TiO2 catalyst and UV-VIS irradiation
- Antioxidant potential and authenticity of some commercial fruit juices studied by EPR and IRMS
- Etching and recovery of gold from aluminum substrate in thiourea solution