Abstract
The paper presents a short review on the synthesis, characterisation and selected medical applications of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGL)) microspheres. The soap-free emulsion-polymerisation of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer (PGL) in water yielded core-shell microspheres with a low particle-diameter dispersity (ratio of the weight average particle diameter and the number average particle diameter). The interfacial fraction of PGL units, estimated by XPS, was in the range of 0–42 mole % depending on the concentration of the macromonomer in the polymerisation feed. The studies of adsorption of model proteins showed that the surface fraction of adsorbed protein was significantly reduced when the PGL interfacial fraction was higher than 40 mole %. The P(S/PGL) particles with covalently immobilised proteins were used for the preparation of photonic crystal assemblies suitable for applications in optical biosensors and the medical diagnostic test for the detection of Helicobacter pylori antibodies in the blood serum.
[1] Aizawa, H., Kurosawa, S., Tanaka, M., Wakida, S., Talib, Z. A., Park, J. W., Yoshimoto, M., Muratsugu, M., Hilborn, J., Miyake, J., & Tanaka, H. (2001). Conventional diagnosis of Treponema pallidum in serum using latex piezoelectric immunoassay. Materials Science and Engineering C, 17, 127–132. DOI: 10.1016/s0928-4931(01)00320-4. http://dx.doi.org/10.1016/S0928-4931(01)00320-410.1016/S0928-4931(01)00320-4Suche in Google Scholar
[2] Andersson, M., Hietala, S., Tenhu, H., & Maunu, S. L. (2006). Polystyrene latex particles coated with crosslinked poly(N-isopropylacrylamide). Colloid and Polymer Science, 284, 1255–1263. DOI: 10.1007/s00396-006-1470-2. http://dx.doi.org/10.1007/s00396-006-1470-210.1007/s00396-006-1470-2Suche in Google Scholar PubMed PubMed Central
[3] Arshady, R. (Ed.) (1999). Microspheres, microcapsules & liposomes (Vol. 1, Preparation and chemical applications). London, UK: Citus Books. Suche in Google Scholar
[4] Arshady, R., Margel, S., Pichot, C., & Delair, T. (1999). Functionalization of preformed microspheres. In R. Arshady (Ed.), Microspheres, microcapsules & liposomes (Vol. 1, Chapter 6, pp. 165–196). London, UK: Citus Books. Suche in Google Scholar
[5] Basinska, T. (2001). Adsorption studies of human serum albumin, human γ-globulins, and human fibrinogen on P(S/PGL) microspheres. Journal of Biomaterials Science, Polymer Edition, 12, 1359–1371. DOI: 10.1163/156856202753419277. http://dx.doi.org/10.1163/15685620275341927710.1163/156856202753419277Suche in Google Scholar PubMed
[6] Basinska, T., Kergoat, L., Mangeney, C., Chehimi, M. M., & Slomkowski, S. (2007). Poly(styrene/α-tertbutoxy-ω-vinylbenzyl-polyglycidol) microspheres for the preparation of novel photonic crystals. e-Polymers, 087. 10.1515/epoly.2007.7.1.1008Suche in Google Scholar
[7] Basinska, T., Kowalczyk, D., Miksa, B., & Slomkowski, S. (1995). Interaction of proteins with polymeric latexes. Polymers for Advanced Technologies, 6, 526–533. DOI: 10.1002/pat.1995.220060714. http://dx.doi.org/10.1002/pat.1995.22006071410.1002/pat.1995.220060714Suche in Google Scholar
[8] Basinska, T., & Slomkowski, S. (1995). Attachment of horseradish peroxidase (HRP) onto the poly(styrene/acrolein) latexes and onto their derivatives with amino groups on the surface; activity of immobilized enzyme. Colloid and Polymer Science, 273, 431–438. DOI: 10.1007/bf00656887. http://dx.doi.org/10.1007/BF0065688710.1007/BF00656887Suche in Google Scholar
[9] Basinska, T., Slomkowski, S., & Delamar, M. (1993). Synthesis and characterization of polystyrene core/polyacrolein shell latexes. Journal of Bioactive and Compatible Polymers, 8, 205–219. DOI: 10.1177/088391159300800301. http://dx.doi.org/10.1177/08839115930080030110.1177/088391159300800301Suche in Google Scholar
[10] Basinska, T., Slomkowski, S., Dworak, A., Panchev, I., & Chehimi, M. M. (2001). Synthesis and characterization of poly(styrene/α-t-butoxy-ω-vinylbenzyl-polyglycidol) microspheres. Colloid and Polymer Science, 279, 916–924. DOI: 10.1007/s003960100517. http://dx.doi.org/10.1007/s00396010051710.1007/s003960100517Suche in Google Scholar
[11] Basinska, T., Slomkowski, S., Kazmierski, S., & Chehimi, M. M. (2008). Properties of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility. Langmuir, 24, 8465–8472. DOI: 10.1021/la800836t. 10.1021/la800836tSuche in Google Scholar PubMed
[12] Basinska, T., Slomkowski, S., Kazmierski, S., Dworak, A., & Chehimi, M. M. (2004). Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, Xray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins. Journal of Polymer Science Part A: Polymer Chemistry, 42, 615–623. DOI: 10.1002/pola.10863. http://dx.doi.org/10.1002/pola.1086310.1002/pola.10863Suche in Google Scholar
[13] Basinska, T., Wisniewska, M., & Chmiela, M. (2005). Principle of a new immunoassay based on electrophoretic mobility of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres: Application for the determination of Helicobacter pylori IgG in blood serum. Macromolecular Bioscience, 5, 70–77. DOI: 10.1002/mabi.200400112. http://dx.doi.org/10.1002/mabi.20040011210.1002/mabi.200400112Suche in Google Scholar
[14] Búcsi, A., Forcada, J., Gibanel, S., Héroguez, V., Fontanille, M., & Gnanou, Y. (1998). Monodisperse polystyrene latex particles functionalized by the macromonomer technique. Macromolecules, 31, 2087–2097. DOI: 10.1021/ma971434q. http://dx.doi.org/10.1021/ma971434q10.1021/ma971434qSuche in Google Scholar
[15] Caballero, M., Ruiz, R., Márquez de Prado, M., Seco, M., Borque, L., & Escanero, J. F. (1999). Development of microparticle-enhanced nephelometric immunoassay for quantitation of human lysozyme in pleural effusion and plasma. Journal of Clinical Laboratory Analysis, 13, 301–307. DOI: 10.1002/(SICI)1098-2825(1999)13:6〈301::AIDJCLA9t>3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1098-2825(1999)13:6<301::AID-JCLA9>3.0.CO;2-310.1002/(SICI)1098-2825(1999)13:6<301::AID-JCLA9>3.0.CO;2-3Suche in Google Scholar
[16] Daly, E., & Saunders, B. R. (2000). A study of the effect of electrolyte on the swelling and stability of poly(Nisopropylacrylamide) microgel dispersions. Langmuir, 16, 5546–5552. DOI: 10.1021/la991292o. http://dx.doi.org/10.1021/la991292o10.1021/la991292oSuche in Google Scholar
[17] DeSousaDelgado, A., Leonard, M., & Dellacherie, E. (2000). Surface modification of polystyrene nanoparticles using dextrans and dextran-POE copolymers: Polymer adsorption and colloidal characterization. Journal of Biomaterials Science, Polymer Edition, 11, 1395–1410. DOI: 10.1163/156856200744309. http://dx.doi.org/10.1163/15685620074430910.1163/156856200744309Suche in Google Scholar
[18] Duracher, D., Elaïssari, A., Mallet, F., & Pichot, C. (2000). Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)-poly(N-isopropylacrylamide) particles. Langmuir, 16, 9002–9008. DOI: 10.1021/la0004045. http://dx.doi.org/10.1021/la000404510.1021/la0004045Suche in Google Scholar
[19] Dworak, A., Panchev, I., Trzebicka, B., & Walach, W. (1998). Poly(α-t-butoxy-ω-styrylo-glycidol): a new reactive surfactant. Polymer Bulletin, 40, 461–468. DOI: 10.1007/s002890050277. http://dx.doi.org/10.1007/s00289005027710.1007/s002890050277Suche in Google Scholar
[20] Fitton, A. O., Hill, J., Jane, D. E., & Millar, R. (1987). Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis, 1987, 1140–1142. DOI: 10.1055/s-1987-28203. http://dx.doi.org/10.1055/s-1987-2820310.1055/s-1987-28203Suche in Google Scholar
[21] Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k. 10.1021/la200290kSuche in Google Scholar
[22] Ganachaud, F., Sauzedde, F., Elaïssari, A., & Pichot, C. (1997). Emulsifier-free emulsion copolymerization of styrene with two different amino-containing cationic monomers. I. Kinetic studies. Journal of Applied Polymer Science, 65, 2315–2330. DOI: 10.1002/(SICI)1097-4628(19970919)65:12〈2315::AIDAPP6〉3.0.CO;2-C. Suche in Google Scholar
[23] Gibanel, S., Heroguez, V., Gnanou, Y., Aramendia, E., Bucsi, A., & Forcada, J. (2001). Monodispersed polystyrene latex particles functionalized by the macromonomer technique. II. Application in immunodiagnosis. Polymers for Advanced Technologies, 12, 494–499. DOI: 10.1002/pat.108. http://dx.doi.org/10.1002/pat.10810.1002/pat.108Suche in Google Scholar
[24] Gosecka, M., Griffete, N., Mangeney, C., Chehimi, M. M., Slomkowski, S., & Basinska, T. (2011). Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Colloid and Polymer Science, 289, 1511–1518. DOI: 10.1007/s00396-011-2447-3. http://dx.doi.org/10.1007/s00396-011-2447-310.1007/s00396-011-2447-3Suche in Google Scholar
[25] Green, R. J., Davies, M. C., Roberts, C. J., & Tendler, S. J. B. (1998). A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. Journal of Biomedical Materials Research, 42, 165–171. DOI: 10.1002/(SICI)1097-4636(199811)42:2〈165::AIDJBM1〉3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1097-4636(199811)42:2<165::AID-JBM1>3.0.CO;2-N10.1002/(SICI)1097-4636(199811)42:2<165::AID-JBM1>3.0.CO;2-NSuche in Google Scholar
[26] Griffete, N., Dybkowska, M., Glebocki, B., Basinska, T., Connan, C., Maître, A., Chehimi, M. M., Slomkowski, S., & Mangeney, C. (2010). Thermoresponsive colloidal crystals built from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzylpolyglycidol) microspheres. Langmuir, 26, 11550–11557. DOI: 10.1021/la100537v. http://dx.doi.org/10.1021/la100537v10.1021/la100537vSuche in Google Scholar
[27] Halacheva, S., Rangelov, S., & Tsvetanov, C. (2006). Poly(glycidol)-based analogues to pluronic block copolymers. Synthesis and aqueous solution properties. Macromolecules, 39, 6845–6852. DOI: 10.1021/ma061040b. 10.1021/ma061040bSuche in Google Scholar
[28] Hazot, P., Delair, T., Elaïssari, A., Chapel, J. P., & Pichot, C. (2002). Functionalization of poly(N-ethylmethacrylamide) thermosensitive particles by phenylboronic acid. Colloid and Polymer Science, 280, 637–646. DOI: 10.1007/s00396-002-0664-5. http://dx.doi.org/10.1007/s00396-002-0664-510.1007/s00396-002-0664-5Suche in Google Scholar
[29] Heller, W., & Pangonis, W. J. (1957). Theoretical investigations on the light scattering of colloidal spheres. I. The specific turbidity. The Journal of Chemical Physics, 26, 498–506. DOI: 10.1063/1.1743332. http://dx.doi.org/10.1063/1.174333210.1063/1.1743332Suche in Google Scholar
[30] Hong, J., Hong, C. K., & Shim, S. E. (2007). Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 225–233. DOI: 10.1016/j.colsurfa.2007.02.027. http://dx.doi.org/10.1016/j.colsurfa.2007.02.02710.1016/j.colsurfa.2007.02.027Suche in Google Scholar
[31] Imaz, A., Miranda, J. I., Ramos, J., & Forcada, J. (2008). Evidences of a hydrolysis process in the synthesis of Nvinylcaprolactambased microgels. European Polymer Journal, 44, 4002–4011. DOI: 10.1016/j.eurpolymj.2008.09.027. http://dx.doi.org/10.1016/j.eurpolymj.2008.09.02710.1016/j.eurpolymj.2008.09.027Suche in Google Scholar
[32] Jamróz-Piegza, M., Utrata-Wesołek, A., Trzebicka, B., & Dworak, A. (2006). Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. European Polymer Journal, 42, 2497–2506. DOI: 10.1016/j.eurpolymj.2006.04.017. http://dx.doi.org/10.1016/j.eurpolymj.2006.04.01710.1016/j.eurpolymj.2006.04.017Suche in Google Scholar
[33] Kawaguchi, H., Sato, Y., Okumura, A., & Kyo, M. (2005). Enhancement of sensitivity and selectivity in surface plasmon resonance detection of a DNA point mutation by polymeric microspheres. e-Polymers, 050. 10.1515/epoly.2005.5.1.521Suche in Google Scholar
[34] Kim, J. H., & Ballauff, M. (1999). The volume transition in thermosensitive core-shell latex particles containing charged groups. Colloid and Polymer Science, 277, 1210–1214. DOI: 10.1007/s003960050512. http://dx.doi.org/10.1007/s00396005051210.1007/s003960050512Suche in Google Scholar
[35] Lacroix-Desmazes, P., & Guyot, A. (1996). Reactive surfactants in heterophase polymerization. 2. Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media. Macromolecules, 29, 4508–4515. DOI: 10.1021/ma951849g. http://dx.doi.org/10.1021/ma951849g10.1021/ma951849gSuche in Google Scholar
[36] López-León, T., Ortega-Vinuesa, J. L., Bastos-González, D., & Elaïssari, A. (2006). Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles: Electrokinetic properties and colloidal stability. The Journal of Physical Chemistry B, 110, 4629–4636. DOI: 10.1021/jp0540508. http://dx.doi.org/10.1021/jp054050810.1021/jp0540508Suche in Google Scholar
[37] Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. 10.1016/S0021-9258(19)52451-6Suche in Google Scholar
[38] Lucas, L. J., Chesler, J. N., & Yoon, J. Y. (2007). Lab-on-achip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosensors and Bioelectronics, 23, 675–681. DOI: 10.1016/j.bios.2007.08.004. http://dx.doi.org/10.1016/j.bios.2007.08.00410.1016/j.bios.2007.08.004Suche in Google Scholar PubMed
[39] Ma, Q., Wang, X., Li, Y., Shi, Y., & Su, X. (2007). Multicolor quantum dot-encoded microspheres for the detection of biomolecules. Talanta, 72, 1446–1452. DOI: 10.1016/j.talanta.52007.01.058. http://dx.doi.org/10.1016/j.talanta.2007.01.058Suche in Google Scholar
[40] Miksa, B., Wilczynska, M., Cierniewski, C., Basinska, T., & Slomkowski, S. (1996). Composite poly(methyl methacrylatemethacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen. Journal of Biomaterials Science, Polymer Edition, 7, 503–513. DOI: 10.1163/156856295x00562. http://dx.doi.org/10.1163/156856295X0056210.1163/156856295X00562Suche in Google Scholar PubMed
[41] Okubo, M., Yamamoto, Y., & Kamei, S. (1989). XPS analysis (ESCA) of the surface composition of poly(styrene/2-hydroxyethyl methacrylate) microspheres produced by emulsifier-free emulsion polymerization. Colloid and Polymer Science, 267, 861–865. DOI: 10.1007/bf01410333. http://dx.doi.org/10.1007/BF0141033310.1007/BF01410333Suche in Google Scholar
[42] Okumura, A., Sato, Y., Kyo, M., & Kawaguchi, H. (2005). Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Analytical Biochemistry, 339, 328–337. DOI: 10.1016/j.ab.2005.01.017. http://dx.doi.org/10.1016/j.ab.2005.01.01710.1016/j.ab.2005.01.017Suche in Google Scholar PubMed
[43] Omer-Mizrahi, M., & Margel, S. (2009). Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution. Journal of Colloid and Interface Science, 329, 228–234. DOI: 10.1016/j.jcis.2008.09.047. http://dx.doi.org/10.1016/j.jcis.2008.09.04710.1016/j.jcis.2008.09.047Suche in Google Scholar PubMed
[44] Ouali, L., Stoll, S., Pefferkorn, E., Elaissari, A., Lanet, V., Pichot, C., & Mandrand, B. (1995). Coagulation of antibodysensitized latexes in the presence of antigen. Polymers for Advanced Technologies, 6, 541–546. DOI: 10.1002/pat.1995.220060716. http://dx.doi.org/10.1002/pat.1995.22006071610.1002/pat.1995.220060716Suche in Google Scholar
[45] Polpanich, D., Tangboriboonrat, P., Elaissari, A., & Udomsangpetch, R. (2007). Detection of malaria infection via latex agglutination assay. Analytical Chemistry, 79, 4690–4695. DOI: 10.1021/ac070502w. http://dx.doi.org/10.1021/ac070502w10.1021/ac070502wSuche in Google Scholar
[46] Revilla, J., Elaïssari, A., Pichot, C., & Gallot, B. (1995). Surface functionalization of polystyrene latex particles with a liposaccharide monomer. Polymers for Advanced Technologies, 6, 455–464. DOI: 10.1002/pat.1995.220060706. http://dx.doi.org/10.1002/pat.1995.22006070610.1002/pat.1995.220060706Suche in Google Scholar
[47] Rosen, S. L. (1993). Fundamental principles of polymeric materials (2nd ed.). New York, NY, USA: Wiley-Interscience. Suche in Google Scholar
[48] Sajjadi, S. (2007). Nanoparticle formation by monomer-starved semibatch emulsion polymerization. Langmuir, 23, 1018–1024. DOI: 10.1021/la062397b. http://dx.doi.org/10.1021/la062397b10.1021/la062397bSuche in Google Scholar
[49] Sanz Izquierdo, M. P., Martín-Molina, A., Ramos, J., Rus, A., Borque, L., Forcada, J., & Galisteo-González, F. (2004). Amino, chloromethyl and acetal-functionalized latex particles for immunoassays: a comparative study. Journal of Immunological Methods, 287, 159–167. DOI: 10.1016/j.jim.2004.01.020. http://dx.doi.org/10.1016/j.jim.2004.01.02010.1016/j.jim.2004.01.020Suche in Google Scholar
[50] Slomkowski, S., Alemán, J. V., Gilbert, R. G., Hess, M., Horie, K., Jones, R. G., Kubisa, P., Meisel, I., Mormann, W., Penczek, S., & Stepto, R. F. T. (2011). Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure and Applied Chemistry, 83, 2229–2259. DOI: 10.1351/pac-rec-10-06-03. http://dx.doi.org/10.1351/PAC-REC-10-06-0310.1351/PAC-REC-10-06-03Suche in Google Scholar
[51] Slomkowski, S., & Basinska, T. (2010). Polymer nano- and microparticle based systems for medical diagnostics. Macromolecular Symposia, 295, 13–22. DOI: 10.1002/masy.200900084. http://dx.doi.org/10.1002/masy.20090008410.1002/masy.200900084Suche in Google Scholar
[52] Slomkowski, S., Basinska, T., & Miksa, B. (2002). New types of microspheres and microsphere-related materials for medical diagnostics. Polymers for Advanced Technologies, 13, 906–918. DOI: 10.1002/pat.283. http://dx.doi.org/10.1002/pat.28310.1002/pat.283Suche in Google Scholar
[53] Sofia, S. J., Premnath, V., & Merrill, E. W. (1998). Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules, 31, 5059–5070. DOI: 10.1021/ma971016l. http://dx.doi.org/10.1021/ma971016l10.1021/ma971016lSuche in Google Scholar
[54] Soini, J. T., Waris, M. E., & Hänninen, P. E. (2004). Detection methods of microsphere based single-step bioaffinity and in vitro diagnostics assays. Journal of Pharmaceutical and Biomedical Analysis, 34, 753–760. DOI: 10.1016/s0731-7085(03)00562-4. http://dx.doi.org/10.1016/S0731-7085(03)00562-410.1016/S0731-7085(03)00562-4Suche in Google Scholar
[55] Takata, S., Shibayama, M., Sasabe, R., & Kawaguchi, H. (2003). Preparation and structure characterization of hairy nanoparticles consisting of hydrophobic core and thermosensitive hairs. Polymer, 44, 495–501. DOI: 10.1016/s0032-3861(02)00768-1. http://dx.doi.org/10.1016/S0032-3861(02)00768-110.1016/S0032-3861(02)00768-1Suche in Google Scholar
[56] Texter, J. (2003). Polymer colloids in photonic materials. Comptes Rendus Chimie, 6, 1425–1433. DOI: 10.1016/j.crci.2003.07.014. http://dx.doi.org/10.1016/j.crci.2003.07.01410.1016/j.crci.2003.07.014Suche in Google Scholar
[57] Zhou, G., Veron, L., Elaissari, A., Delair, T., & Pichot, C. (2004). A new route for the preparation of cyano-containing poly(N-isopropylacrylamide) microgel latex for specific immobilization of antibodies. Polymer International, 53, 603–608. DOI: 10.1002/pi.1439. http://dx.doi.org/10.1002/pi.143910.1002/pi.1439Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen
Artikel in diesem Heft
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen