Startseite The use of stable isotopes ratios for authentication of fruit juices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The use of stable isotopes ratios for authentication of fruit juices

  • Dana Magdas EMAIL logo , Nicoleta Vedeanu und Romulus Puscas
Veröffentlicht/Copyright: 23. November 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The determination of the content of stable isotopes, 18O and 2H, respectively, in juice water facilitates the distinction between authentic juices and juices made from concentrates by redilution with tap water. At the same time, the detection of C4 cane or corn-derived sugar syrups in fruit juices which are produced from C3 fruit types is thus facilitated by the characteristic differences in 13C/12C, expressed as δ 13C (‰) values due to photosynthetic CO2 assimilation via the C3−, C4−, and crassulacean acid metabolism pathways. In this study, the quantitative determination of water added to an authentic juice, on the basis of δ 18O, and δ 2H values, respectively, was successfully performed. Also, the δ 18O, and δ 2H of juice water and δ 13C of the whole juice in 18 samples were also determined. The results obtained provided us with the possibility of distinguishing between authentic fruit juices and those obtained by redilution of concentrated fruit juices and the detection of C4 type added sugar.

[1] Crittenden, R. G., Andrew, A. S., LeFournour, M., Young, M. D., Middleton, H., & Stockmann, R. (2007). Determining the geographic origin of milk in Australasia using multi-element stable isotope ratio analysis. International Dairy Journal, 17, 421–428. DOI: 10.1016/j.idairyj.2006.05.012. http://dx.doi.org/10.1016/j.idairyj.2006.05.01210.1016/j.idairyj.2006.05.012Suche in Google Scholar

[2] Dunbar, J., & Wilson, A. T. (1983). Oxygen and hydrogen isotopes in fruit and vegetable juices. Plant Physiology, 72, 725–727. DOI: 10.1104/pp.72.3.725. http://dx.doi.org/10.1104/pp.72.3.72510.1104/pp.72.3.725Suche in Google Scholar

[3] European Committee for Standardisation (1996). Determination of the stable oxygen isotope ratio (18O/16O) of water from fruit juices - Method using Isotope Ratio Mass Spectrometry. CEN/TC174 No. 109. Brussels, Belgium. Suche in Google Scholar

[4] International Atomic Energy Agency (1968). Vienna Standard Mean Ocean Water. Vienna, Austria. Suche in Google Scholar

[5] International Atomic Energy Agency (1983). Vienna Pee Dee Belemnite. Vienna, Austria. Suche in Google Scholar

[6] Koziet, J., Rossmann, A., Martin, G. J., & Johnson, P. (1995). Determination of the oxygen-18 and deuterium content of fruit and vegetable juice water. An European interlaboratory comparison study. Analytica Chimica Acta, 302, 29–37. DOI: 10.1016/0003-2670(94)00424-K. http://dx.doi.org/10.1016/0003-2670(94)00424-K10.1016/0003-2670(94)00424-KSuche in Google Scholar

[7] Magdas, D. A., & Puscas, R. (2011). Stable isotopes determination in some Romanian fruit juices. Isotopes in Environmental and Health Study, 47, 372–378. DOI: 10.1080/10256016.2011.600454. http://dx.doi.org/10.1080/10256016.2011.60045410.1080/10256016.2011.600454Suche in Google Scholar

[8] Nissenbaum, A., Lifshitz, A., & Stepak, Y. (1974). Detection of citrus juice adulteration using the distribution of natural stable isotopes. Lebensmittel-Wissenschaft-Technology, 7, 152–154. Suche in Google Scholar

[9] O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567. DOI: 10.1016/0031-9422(81) 85134-5. http://dx.doi.org/10.1016/0031-9422(81)85134-510.1016/0031-9422(81)85134-5Suche in Google Scholar

[10] O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bio-Science, 38, 328–333. 10.2307/1310735Suche in Google Scholar

[11] Pupin, A. M., Dennis, M. J., Parker, I., Kelly, S., Bigwood, T., & Toledo, M. C. F. (1998). Use of isotopic analyses to determine the authenticity of Brazilian orange juice (Citrus sinensis). Journal of Agricultural and Food Chemistry, 46, 1369–1373. DOI: 10.1021/jf970746p. http://dx.doi.org/10.1021/jf970746p10.1021/jf970746pSuche in Google Scholar

[12] Rossmann, A. (2001). Determination of stable isotope ratios in food analysis. Food Reviews International, 17, 347–381. DOI: 10.1081/FRI-100104704. http://dx.doi.org/10.1081/FRI-10010470410.1081/FRI-100104704Suche in Google Scholar

[13] Sacco, D., Brescia, M. A., Sgaramella, A., Casiello, G., Buccolieri, A., Ogrinc, N., & Sacco, A. (2009). Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chemistry, 114, 1559–1563. DOI: 10.1016/j.foodchem.2008.11.056. http://dx.doi.org/10.1016/j.foodchem.2008.11.05610.1016/j.foodchem.2008.11.056Suche in Google Scholar

[14] Schmidt, H. L., & Winkler, F. J. (1979). Einige Ursachen der Variationsbreite von δ 13C-Werten bei C3- und C4-Pflanzen. Berichte der Deutschen Botanischen Gesellschaft, 92, 185–191. Suche in Google Scholar

[15] Simpkins, W. A., Patel, G., Harrison, M., & Goldberg, D. (2000). Stable carbon isotope ratio analysis of Australian orange juices. Food Chemistry, 70, 385–390. DOI: 10.1016/S0308-8146(00)00086-8. http://dx.doi.org/10.1016/S0308-8146(00)00086-810.1016/S0308-8146(00)00086-8Suche in Google Scholar

[16] Sternberg, L. O., DeNiro, M. J., & Johnson, H. B. (1984). Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology, 74, 557–561. DOI: 10.1104/pp.74.3.557. http://dx.doi.org/10.1104/pp.74.3.55710.1104/pp.74.3.557Suche in Google Scholar PubMed PubMed Central

Published Online: 2011-11-23
Published in Print: 2012-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0105-3/pdf
Button zum nach oben scrollen