Abstract
Photodegradation of endocrine disrupting butylparaben (BP) in aerated aqueous solutions was studied using 4,4′,4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzenesulphonic acid) (TPPS4), as a sensitiser. Influence of various parameters, such as initial sensitiser and BP concentration, pH of the reaction solution and oxygen content in the reaction solution, on the photosensitised oxidation was examined. It was found that the dominant pathway of BP degradation occurred in the reaction with molecular singlet oxygen 1O2, i.e. via photosensitised oxidation mechanism of type II. Kinetic parameters of the BP reaction with 1O2 were estimated.
[1] Aggarwal, L. P. F., Baptista, M. S., & Borissevitch, I. E. (2007). Effects of NaCl upon TPPS4 triplet state characteristics and singlet oxygen formation. Journal of Photochemistry and Photobiology A: Chemistry, 186, 187–193. DOI: 10.1016/j.jphotochem.2006.08.003. http://dx.doi.org/10.1016/j.jphotochem.2006.08.00310.1016/j.jphotochem.2006.08.003Search in Google Scholar
[2] Aggarwal, L. P. F., & Borissevitch, I. E. (2006). On the dynamics of the TPPS4 aggregation in aqueous solutions: Successive formation of H and J aggregates. Spectrochimica Acta Part A, 63, 227–233. DOI: 10.1016/j.saa.2005.05.009. http://dx.doi.org/10.1016/j.saa.2005.05.00910.1016/j.saa.2005.05.009Search in Google Scholar
[3] Bonchio, M., Carofiglio, T., Carraro, M., Fornasier, R., & Tonellato, U. (2002). Efficient sensitized photooxygenation in water by a porphyrin-cyclodextrin supramolecular complex. Organic Letters, 4, 4635–4637. DOI: 10.1021/ol0270069. http://dx.doi.org/10.1021/ol027006910.1021/ol0270069Search in Google Scholar
[4] Cai, J. H., Huang, J. W., Zhao, P., Zhou, Y. H., Yu, H. C., & Ji, L. N. (2008). Photodegradation of 1,5-dihydroxynaphthalene catalyzed by meso-tetra(4-sulfonatophenyl)porphyrin in aerated aqueous solution. Journal of Molecular Catalysis A: Chemical, 292, 49–53. DOI: 10.1016/j.molcata.2008.06.011. http://dx.doi.org/10.1016/j.molcata.2008.06.01110.1016/j.molcata.2008.06.011Search in Google Scholar
[5] Davila, J., & Harriman, A. (1990). Photoreactions of macrocyclic dyes bound to human serum albumin. Photochemistry and Photobiology, 51, 9–19. DOI: 10.1111/j.1751-1097.1990.tb01678.x. http://dx.doi.org/10.1111/j.1751-1097.1990.tb01678.x10.1111/j.1751-1097.1990.tb01678.xSearch in Google Scholar
[6] EDSTAC (1998). Conceptual framework and principles. EDSTAC final report (Chapter 3). Washington, DC, USA: United States Environmental Protection Agency. Search in Google Scholar
[7] Eriksson, E., Christensen, N., Schmidt, J. E., & Ledin, A. (2008). Potential priority pollutants in sewage sludge. Desalination, 226, 371–388. DOI: 10.1016/j.desal.2007.03.019. http://dx.doi.org/10.1016/j.desal.2007.03.01910.1016/j.desal.2007.03.019Search in Google Scholar
[8] Gensch, T., & Braslavsky, S. E. (1997). Volume changes related to triplet formation of water-soluble porphyrins. A laser-induced optoacoustic spectroscopy (LIOAS) study. The Journal of Physical Chemistry B, 101, 101–108. DOI: 10.1021/jp960643u. http://dx.doi.org/10.1021/jp960643u10.1021/jp960643uSearch in Google Scholar
[9] Gerdes, R., Wöhrle, D., Spiller, W., Schneider, G., Schnurpfeil, G., & Schulz-Ekloff, G. (1997). Photo-oxidation of phenol and monochlorophenols in oxygen-saturated aqueous solutions by different photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 111, 65–74. DOI: 10.1016/S1010-6030(97)00209-8. http://dx.doi.org/10.1016/S1010-6030(97)00209-810.1016/S1010-6030(97)00209-8Search in Google Scholar
[10] Gmurek, M., Kubat, P., Mosinger, J., & Miller, J. S. (2011). Comparison of two photosensitizers Al(III) phthalocyanine chloride tetrasulfonic acid and meso-tetrakis (4-sulfonatophenyl) porphyrin in the photooxidation of n-butylparaben. Journal of Photochemistry and Photobiology A: Chemistry, 223, 50–56. DOI: 10.1016/j.jphotochem.2011.07.015 http://dx.doi.org/10.1016/j.jphotochem.2011.07.01510.1016/j.jphotochem.2011.07.015Search in Google Scholar
[11] Gonçalves, P. J., Aggarwal, L. P. F., Marquezin, C. A., Ito, A. S., De Boni, L., Barbosa Neto, N. M., Rodrigues, J. J., Jr., Zílio, S. C., & Borissevitch, I. E. (2006). Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin. Journal of Photochemistry and Photobiology A: Chemistry, 181, 378–384. DOI: 10.1016/j.jphotochem.2005.12.023. http://dx.doi.org/10.1016/j.jphotochem.2005.12.02310.1016/j.jphotochem.2005.12.023Search in Google Scholar
[12] Gryglik, D., Lach, M., & Miller, J. S. (2009). The aqueous photosensitized degradation of butylparaben. Photochemical & Photobiological Sciences, 8, 549–555. DOI: 10.1039/B817846A. http://dx.doi.org/10.1039/b817846a10.1039/b817846aSearch in Google Scholar
[13] Jewell, C., Prusakiewicz, J. J., Ackermann, C., Payne, N. A., Fate, G., Voorman, R., & Williams, F. M. (2007). Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture. Toxicology and Applied Pharmacology, 225, 221–228. DOI: 10.1016/j.taap.2007.08.002. http://dx.doi.org/10.1016/j.taap.2007.08.00210.1016/j.taap.2007.08.002Search in Google Scholar
[14] Liu, Z., Kanjo, Y., & Mizutani, S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment — physical means, biodegradation, and chemical advanced oxidation: A review. Science of the Total Environment, 407, 731–748. DOI: 10.1016/j.scitotenv.2008.08.039. http://dx.doi.org/10.1016/j.scitotenv.2008.08.03910.1016/j.scitotenv.2008.08.039Search in Google Scholar
[15] Miller, J. S. (2005). Rose bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light. Water Research, 39, 412–422. DOI: 10.1016/j.watres.2004.09.019. http://dx.doi.org/10.1016/j.watres.2004.09.01910.1016/j.watres.2004.09.019Search in Google Scholar
[16] Monteiro, C. J. P., Pereira, M. M., Azenha, M. E., Burrows, H. D., Serpa, C., Arnaut, L. G., Tapia, M. J., Sarakha, M., Wong-Wah-Chung, P., & Navaratnam, S. (2005). A comparative study of water soluble 5,10,15,20-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin and its metal complexes as efficient sensitizers for photodegradation of phenols. Photochemical & Photobiological Sciences, 4, 617–624. DOI: 10.1039/b507597a. http://dx.doi.org/10.1039/b507597a10.1039/b507597aSearch in Google Scholar
[17] Mosinger, J., Deumié, M., Lang, K., Kubát, P., & Wagnerová, D. M. (2000). Supramolecular sensitizer: complexation of meso-tetrakis(4-sulfonatophenyl)porphyrin with 2- hydroxypropyl-cyclodextrins. Journal of Photochemistry and Photobiology A: Chemistry, 130, 13–20. DOI: 10.1016/S1010- 6030(99)00204-X. http://dx.doi.org/10.1016/S1010-6030(99)00204-X10.1016/S1010-6030(99)00204-XSearch in Google Scholar
[18] Murov, S. L., Carmichael, I., & Hug, G. L. (1993). Handbook of photochemistry (2nd ed.). New York, NY, USA: Marcel Dekker. Search in Google Scholar
[19] Ning, B., Graham, N. J. D., & Zhang, Y. (2007). Degradation of octylphenol and nonylphenol by ozone - Part II: Indirect reaction. Chemosphere, 68, 1173–1179. DOI: 10.1016/j.chemosphere.2007.01.056. http://dx.doi.org/10.1016/j.chemosphere.2007.01.05610.1016/j.chemosphere.2007.01.056Search in Google Scholar
[20] Nowakowska, M., & Kępczyński, M. (1998). Polymeric photosensitizers 2. Photosensitized oxidation of phenol in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 116, 251–256. DOI: 10.1016/S1010- 6030(98)00305-0. http://dx.doi.org/10.1016/S1010-6030(98)00305-010.1016/S1010-6030(98)00305-0Search in Google Scholar
[21] Ozoemena, K., Kuznetsova, N., & Nyokong, T. (2001). Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium. Journal of Molecular Catalysis A: Chemical, 176, 29–40. DOI: 10.1016/S1381-1169(01)00243-6. http://dx.doi.org/10.1016/S1381-1169(01)00243-610.1016/S1381-1169(01)00243-6Search in Google Scholar
[22] Padervand, M., Tasviri, M., & Gholami, M. R. (2011). Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite. Chemical Papers, 65, 280–288. DOI: 10.2478/s11696-011-0013-6. http://dx.doi.org/10.2478/s11696-011-0013-610.2478/s11696-011-0013-6Search in Google Scholar
[23] Rebelo, S. L. H., Melo, A., Coimbra, R., Azenha, M. E., Pereira, M. M., Burrows, H. D., & Sarakha, M. (2007). Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers. Environmental Chemistry Letters, 5, 29–33. DOI: 10.1007/s10311-006-0072-z. http://dx.doi.org/10.1007/s10311-006-0072-z10.1007/s10311-006-0072-zSearch in Google Scholar
[24] Routledge, E. J., Parker, J., Odum, J., Ashby, J., & Sumpter, J. P. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and Applied Pharmacology, 153, 12–19. DOI: 10.1006/taap.1998.8544. http://dx.doi.org/10.1006/taap.1998.854410.1006/taap.1998.8544Search in Google Scholar PubMed
[25] Schmidt, R. (1989). Influence of heavy atoms on the deactivation of singlet oxygen (1Δg) in solution. Journal of the American Chemical Society, 111, 6983–6987. DOI: 10.1021/ja00200a013. http://dx.doi.org/10.1021/ja00200a01310.1021/ja00200a013Search in Google Scholar
[26] Silva, E., Pereira, M. M., Burrows, H. D., Azenha, M. E., Sarakha, M., & Bolte, M. (2004). Photooxidation of 4-chlorophenol sensitised by iron meso-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin in aqueous solution. Photochemical & Photobiological Sciences, 3, 200–204. DOI: 10.1039/B3089 75D. http://dx.doi.org/10.1039/b308975dSearch in Google Scholar
[27] Soni, M. G., Carabin, I. G., & Burdock, G. A. (2005). Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology, 43, 985–1015. DOI: 10.1016/j.fct.2005.01.020. http://dx.doi.org/10.1016/j.fct.2005.01.02010.1016/j.fct.2005.01.020Search in Google Scholar PubMed
[28] Tanielian, C., Wolff, C., & Esch, M. (1996). Singlet oxygen production in water: Aggregation and charge-transfer effects. The Journal of Physical Chemistry, 100, 6555–6560. DOI: 10.1021/jp952107s. http://dx.doi.org/10.1021/jp952107s10.1021/jp952107sSearch in Google Scholar
[29] Valanciunaite, J., Bagdonas, S., Streckyte, G., & Rotomskis, R. (2006). Spectroscopic study of TPPS4 nanostructures in the presence of bovine serum albumin. Photochemical & Photobiological Sciences, 5, 381–388. DOI: 10.1039/B513464A. http://dx.doi.org/10.1039/b513464a10.1039/b513464aSearch in Google Scholar PubMed
[30] Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. Journal of Physical and Chemical Reference Data, 22, 113–262. DOI: 10.1063/1.555934. http://dx.doi.org/10.1063/1.55593410.1063/1.555934Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Bioactive papaverine derivatives bind G-quadruplexes selectively
- Ethanol production in a bioreactor with an integrated membrane distillation module
- Wettability of polypropylene capillary membranes during the membrane distillation process
- A reburning process using sewage sludge-derived syngas
- Chemical engineering approach to regenerative medicine
- Photosensitised oxidation of a water pollutant using sulphonated porphyrin
- Influence of selected biowaste materials pre-treatment on their anaerobic digestion
- Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films
- Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films
- The use of stable isotopes ratios for authentication of fruit juices
- Reduction of ostazine dyes’ photodynamic effect by Fenton reaction
Articles in the same Issue
- Bioactive papaverine derivatives bind G-quadruplexes selectively
- Ethanol production in a bioreactor with an integrated membrane distillation module
- Wettability of polypropylene capillary membranes during the membrane distillation process
- A reburning process using sewage sludge-derived syngas
- Chemical engineering approach to regenerative medicine
- Photosensitised oxidation of a water pollutant using sulphonated porphyrin
- Influence of selected biowaste materials pre-treatment on their anaerobic digestion
- Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films
- Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films
- The use of stable isotopes ratios for authentication of fruit juices
- Reduction of ostazine dyes’ photodynamic effect by Fenton reaction