Home Chemical engineering approach to regenerative medicine
Article
Licensed
Unlicensed Requires Authentication

Chemical engineering approach to regenerative medicine

  • Giuseppe Perale EMAIL logo , Filippo Rossi , Pietro Veglianese and Maurizio Masi
Published/Copyright: November 23, 2011
Become an author with De Gruyter Brill

Abstract

The intrinsically multi-factorial pathological trend of spinal cord injury is probably the most important reason behind the absence of efficient therapeutic strategies. Therefore, recent studies suggest the use of new tools combining the delivery of both cells and drugs. Systems which are able to perform multiple controlled delivery of different therapeutic agents have gained particularly strong interest. Hence, in order to avoid trial and error approaches, several studies were performed following the classic chemical engineering multiscale approach: tuning microchemistry to manipulate macro properties in order to satisfy specific medical needs as injectability, low stress on target tissues, ability to retain liquids, capability of carrying living cells, and possibility to control the delivery of drugs. In this framework we focused on injectable agarose-carbomer based hydrogels applying he results of our studies performed in the past two years: in vitro biocompatibility, physical chemical studies, drug delivery transport phenomena investigation, and in vivo biocompatibility in uninjured Brainbow mice.

[1] Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering: Part B, 16, 371–383. DOI: 10.1089/ten.teb.2009.0639. http://dx.doi.org/10.1089/ten.teb.2009.063910.1089/ten.teb.2009.0639Search in Google Scholar PubMed PubMed Central

[2] Atala, A., Lanza, R., Thomson, J. A., & Nerem, R. M. (2008). Principles of regenerative medicine. Burlington, MA, USA: Elsevier. Search in Google Scholar

[3] Bacaj, T., Tevlin, M., Lu, Y., & Shaham, S. (2008). Glia are essential for sensory organ function in C. elegans. Science, 322, 744–747. DOI: 10.1126/science.1163074. http://dx.doi.org/10.1126/science.116307410.1126/science.1163074Search in Google Scholar PubMed PubMed Central

[4] Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213. DOI: 10.1016/j.jconrel.2009.05.009. http://dx.doi.org/10.1016/j.jconrel.2009.05.00910.1016/j.jconrel.2009.05.009Search in Google Scholar PubMed

[5] Baumann, M. D., Kang, C. E., Tator, C. H., & Shoichet, M. S. (2010). Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials, 31, 7631–7639. DOI: 10.1016/j.biomaterials.2010.07.004. http://dx.doi.org/10.1016/j.biomaterials.2010.07.00410.1016/j.biomaterials.2010.07.004Search in Google Scholar PubMed

[6] Bjugstad, K. B., Lampe, K., Kern, D. S., & Mahoney, M. (2010). Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: An analysis of the glial response across space and time. Journal of Biomedical Materials Research Part A, 95A, 79–91. DOI: 10.1002/jbm.a.32809. http://dx.doi.org/10.1002/jbm.a.3280910.1002/jbm.a.32809Search in Google Scholar PubMed

[7] Bradbury, E. J., & Carter, L. M. (2011). Manipulating the glial scar: Chondroitinase ABC as a therapy for spinal cord injury. Brain Research Bulletin, 84, 306–316. DOI: 10.1016/j.brainresbull.2010.06.015. http://dx.doi.org/10.1016/j.brainresbull.2010.06.01510.1016/j.brainresbull.2010.06.015Search in Google Scholar PubMed

[8] Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., & Forsberg-Nilsson, K. (2007). Enhanced neuronal differentiation in a three-dimensional collagenhyaluronan matrix. Journal of Neuroscience Research, 85, 2138–2146. DOI: 10.1002/jnr.21358. http://dx.doi.org/10.1002/jnr.2135810.1002/jnr.21358Search in Google Scholar PubMed

[9] Calegari, F., Coco, S., Taverna, E., Bassetti, M., Verderio, C., Corradi, N., Matteoli, M., & Rosa, P. (1999). A regulated secretory pathway in cultured hippocampal astrocytes. The Journal of Biological Chemistry, 274, 22539–22547. DOI: 10.1074/jbc.274.32.22539. http://dx.doi.org/10.1074/jbc.274.32.2253910.1074/jbc.274.32.22539Search in Google Scholar PubMed

[10] Cao, K., Huang, L., Liu, J., An, H., Shu, Y., & Han, Z. (2010). Inhibitory effects of high-dose methylprednisolone on bacterial translocation from gut and endotoxin re lease following acute spinal cord injury-induced paraplegia in rats. Neural Regeneration Research, 5, 456–460. DOI: 10.3969/j.issn.1673-5374.2010.06.009. Search in Google Scholar

[11] Casalini, T., Salvalaglio, M., Perale, G., Masi, M., & Cavallotti, C. (2011). Diffusion and aggregation of sodium fluorescein in aqueous solutions. Journal of Physical Chemistry B, in press. DOI: 10.1021/jp207459k. 10.1021/jp207459kSearch in Google Scholar PubMed

[12] Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8, 752–758. DOI: 10.1038/nn1472. http://dx.doi.org/10.1038/nn147210.1038/nn1472Search in Google Scholar PubMed

[13] de Jong, S. J., van Eerdenbrugh, B., van Nostrum, C. F., Kettenes-van de Bosch, J. J., & Hennink, W. E. (2001). Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. Journal of Controlled Release, 71, 261–275. DOI: 10.1016/s0168-3659(01)00228-0. http://dx.doi.org/10.1016/S0168-3659(01)00228-010.1016/S0168-3659(01)00228-0Search in Google Scholar

[14] Dumitriu, S. (2002). Polymeric biomaterials. New York, NY: Marcel Dekker. Search in Google Scholar

[15] European Commision (2009). Commission regulation (EC) No 668/2009 of 24 July 2009. Official Journal of the European Union, L 194, 7–10. Search in Google Scholar

[16] Fawcett, J.W., & Asher, R. A. (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49, 377–391. DOI: 10.1016/s0361-9230(99)00072-6. http://dx.doi.org/10.1016/S0361-9230(99)00072-610.1016/S0361-9230(99)00072-6Search in Google Scholar

[17] Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L., & Nealey, P. F. (1999). Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials, 20, 573–588. DOI: 10.1016/s0142-9612(98)00209-9. http://dx.doi.org/10.1016/S0142-9612(98)00209-910.1016/S0142-9612(98)00209-9Search in Google Scholar

[18] Flory, P. J. (1953). Principles of polymer chemistry. New York, NY, USA Cornell Univeristy Press. Search in Google Scholar

[19] Fournier, E., Passirani, C., Montero-Menei, C. N., & Benoit, J. P. (2003). Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials, 24, 3311–3331. DOI: 10.1016/s0142-9612(03)00161-3. http://dx.doi.org/10.1016/S0142-9612(03)00161-310.1016/S0142-9612(03)00161-3Search in Google Scholar

[20] Hejčl, A., Lesny, P., Přadný, M., Šedý, J., Zámečník, J., Jendelová, P., Michálek, J., & Syková, E. (2009). Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. Journal of Material Science: Materials in Medicine, 20, 1571–1577. DOI: 10.1007/s10856-009-3714-4. http://dx.doi.org/10.1007/s10856-009-3714-410.1007/s10856-009-3714-4Search in Google Scholar PubMed

[21] Hejčl, A., Šedý, J., Kapcalová, M., Toro, D. A., Amemori, T., Lesny, P., Likavčanová-Mašínová, K., Krumbholcová, E., Přándý, M., Michálek, J., Burian, M., Hájek, M., Jendelová, P., & Syková, E. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 19, 1535–1546. DOI: 10.1089/scd.2009.0378. http://dx.doi.org/10.1089/scd.2009.037810.1089/scd.2009.0378Search in Google Scholar PubMed

[22] Horner, P. J., & Gage, F. H. (2000). Regenerating the damaged central nervous system. Nature, 407, 963–970. DOI: 10.1038/35039559. http://dx.doi.org/10.1038/3503955910.1038/35039559Search in Google Scholar PubMed

[23] Huglin, M. B., Rehab, M. M. A. M., & Zakaria, M. B. (1986). Thermodynamic interactions in copolymeric hydrogels. Macromolecules, 19, 2986–2991. DOI: 10.1021/ma0016 6a019. http://dx.doi.org/10.1021/ma00166a019Search in Google Scholar

[24] Kim, Y. T., Caldwell, J. M., & Bellamkonda, R. V. (2009). Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials, 30, 2582–2590. DOI: 10.1016/j.biomaterials.2008.12.077. http://dx.doi.org/10.1016/j.biomaterials.2008.12.07710.1016/j.biomaterials.2008.12.077Search in Google Scholar PubMed PubMed Central

[25] Kubinová, Š., & Syková, E. (2010). Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine, 5, 99–108. DOI: 10.2217/nnm.09.93. http://dx.doi.org/10.2217/nnm.09.9310.2217/nnm.09.93Search in Google Scholar PubMed

[26] Kwon, B. K., Sekhon, L. H., & Fehlings, M. G. (2010). Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine, 35, S263–S270. DOI: 10.1097/brs.0b013e3181f3286d. http://dx.doi.org/10.1097/BRS.0b013e3181f3286d10.1097/BRS.0b013e3181f3286dSearch in Google Scholar PubMed

[27] Langer, R. (2009). Perspectives and challenges in tissue engineering and regenerative medicine. Advanced Materials, 21, 3235–3236. DOI: 10.1002/adma.200902589. http://dx.doi.org/10.1002/adma.20090258910.1002/adma.200902589Search in Google Scholar PubMed

[28] Lanza, R. P., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering. Burlington, MA, USA: Elsevier. Search in Google Scholar

[29] Leung, B. K., Biran, R., Underwood, C. J., & Tresco, P. A. (2008). Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials, 29, 3289–3297. DOI: 10.1016/j.biomaterials.2008.03.045. http://dx.doi.org/10.1016/j.biomaterials.2008.03.04510.1016/j.biomaterials.2008.03.045Search in Google Scholar PubMed

[30] Livet, J., Weissman, T. A., Kang, H., Draft, R.W., Lu, J., Bennis, R. A., Sanes, J. R., & Lichtman, J.W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–62. DOI: 10.1038/nature06293. http://dx.doi.org/10.1038/nature0629310.1038/nature06293Search in Google Scholar PubMed

[31] Luo, Y., & Shoichet, M. S. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 3, 249–253. DOI: 10.1038/nmat1092. http://dx.doi.org/10.1038/nmat109210.1038/nmat1092Search in Google Scholar PubMed

[32] McDonald, J. W., Gottlieb, D. I., & Choi, D. W. (2000). Reply to “What is a functional recovery after spinal cord injury?”. Nature Medicine, 6, 358. DOI: 10.1038/74759. http://dx.doi.org/10.1038/7475910.1038/74759Search in Google Scholar PubMed

[33] Nakamatsu, J., Torres, F. G., Troncoso, O. P., Yuan, M. L., & Boccaccini, A. R. (2006). Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules, 7, 3345–3355. DOI: 10.1021/bm0605311. http://dx.doi.org/10.1021/bm060531110.1021/bm0605311Search in Google Scholar PubMed

[34] Nisbet, D. R., Crompton, K. E., Horne, M. K., Finkelstein, D. I., & Forsythe, J. S. (2008). Neural tissue engineering of the CNS using hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B, 251–263. DOI: 10.1002/jbm.b.31000. http://dx.doi.org/10.1002/jbm.b.3100010.1002/jbm.b.31000Search in Google Scholar PubMed

[35] Novikova, L. N., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J. O., & Novikov, L. N. (2006). Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research Part A, 77A, 242–252. DOI: 10.1002/jbm.A.30603. http://dx.doi.org/10.1002/jbm.a.3060310.1002/jbm.a.30603Search in Google Scholar PubMed

[36] Perale, G., Giordano, C., Bianco, F., Rossi, F., Tunesi, M., Daniele, F., Crivelli, F., Matteoli, M., & Masi, M. (2011a). Hydrogel for cell housing in the brain and in the spinal cord. International Journal of Artificial Organs, 34, 295–303. DOI: 10.5301/ijao.2011.6488. http://dx.doi.org/10.5301/IJAO.2011.648810.5301/IJAO.2011.6488Search in Google Scholar PubMed

[37] Perale, G., Rossi, F., Santoro, M., Marchetti, P., Mele, A., Castiglione, F., Raffa, E., & Masi, M. (2011b). Drug release from hydrogel: A new understanding of transport phenomena. Journal of Biomedical Nanotechnology, 7, 476–481. DOI: 10.1166/jbn.2011.1302. http://dx.doi.org/10.1166/jbn.2011.130210.1166/jbn.2011.1302Search in Google Scholar PubMed

[38] Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., & Veglianese, P. (2011c). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345. DOI: 10.1021/cn200030w. http://dx.doi.org/10.1021/cn200030w10.1021/cn200030wSearch in Google Scholar PubMed PubMed Central

[39] Perale, G., Veglianese, P., Rossi, F., Peviani, M., Santoro, M., Llupi, D., Micotti, E., Forloni, G., & Masi, M. (2011d). In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 65, 1688–1692. DOI: 10.1016/j.matlet.2011.02.036. http://dx.doi.org/10.1016/j.matlet.2011.02.03610.1016/j.matlet.2011.02.036Search in Google Scholar

[40] Prang, P., Müller, R., Eljaouhari, A., Heckmann, K., Kunz, W., Weber, T., Faber, C., Vroemen, M., Bogdahn, U., & Weidner, N. (2006). The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials, 27, 3560–3569. DOI: 10.1016/j.biomaterials.2006.01.053. 10.1016/j.biomaterials.2006.01.053Search in Google Scholar PubMed

[41] Rossi, F., Casalini, T., Santoro, M., Mele, A., & Perale, G. (2011a). Methylprednisolone release from agar-Carbomerbased hydrogel: a promising tool for local drug delivery. Chemical Papers, 65, 903–908. DOI: 10.2478/s11696-011-0059-5. http://dx.doi.org/10.2478/s11696-011-0059-510.2478/s11696-011-0059-5Search in Google Scholar

[42] Rossi, F., Chatzistavrou, X., Perale, G., & Boccaccini, A. R. (2012). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering appliactions. Journal of Applied Polymer Science, 123, 398–408. DOI: 10.1002/app.34488. http://dx.doi.org/10.1002/app.3448810.1002/app.34488Search in Google Scholar

[43] Rossi, F., Perale, G., & Masi, M. (2010). Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chemical Papers, 64, 573–578. DOI: 10.2478/s11696-010-0052-4. http://dx.doi.org/10.2478/s11696-010-0052-410.2478/s11696-010-0052-4Search in Google Scholar

[44] Rossi, F., Perale, G., Storti, G., & Masi, M. (2011b). A library of tunable agarose carbomer-based hydrogels for tissue engineering applications: The role of cross-linkers. Journal of Applied Polymer Science, in press. DOI: 10.1002/app.34731. 10.1002/app.34731Search in Google Scholar

[45] Sakurada, K., McDonald, F. M., & Shimada, F. (2008). Regenerative medicine and stem cell based drug discovery. Angewandte Chemie International Edition, 47, 5718–5738. DOI: 10.1002/anie.200700724. http://dx.doi.org/10.1002/anie.20070072410.1002/anie.200700724Search in Google Scholar PubMed

[46] Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394. http://dx.doi.org/10.1021/jp111139410.1021/jp1111394Search in Google Scholar PubMed

[47] Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901 530r. http://dx.doi.org/10.1021/ma901530rSearch in Google Scholar

[48] Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106. http://dx.doi.org/10.1002/adma.20080210610.1002/adma.200802106Search in Google Scholar PubMed PubMed Central

[49] Stella, V. J., Lee, H. K., & Thompson, D. O. (1995). The effect of SBE4-β-CD on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two water-soluble prodrugs. International Journal of Pharmaceutics, 120, 189–195. DOI: 10.1016/0378-5173(94)00404-S. http://dx.doi.org/10.1016/0378-5173(94)00404-S10.1016/0378-5173(94)00404-SSearch in Google Scholar

[50] Steward, O., Schauwecker, P. E., Guth, L., Zhang, Z. Y., Fujiki, M., Inman, D., Wrathall, J., Kempermann, G., Gage, F. H., Saatman, K. E., Raghupathi, R., & McIntosh, T. (1999). Genetic approaches to neurotrauma research: Opportunities and potential pitfalls of murine models. Experimental Neurology, 157, 19–42. DOI: 10.1006/exnr.1999.7040. http://dx.doi.org/10.1006/exnr.1999.704010.1006/exnr.1999.7040Search in Google Scholar

[51] Tan, H. P., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499–2506. DOI: 10.1016/j.biomaterials.2008.12.080. http://dx.doi.org/10.1016/j.biomaterials.2008.12.08010.1016/j.biomaterials.2008.12.080Search in Google Scholar

[52] van de Manakker, F., Vermonden, T., el Morabit, N., van Nostrum, C. F., & Hennink, W. E. (2008). Rheological behavior of self-assembling PEG-β-cyclodextrin/PEGcholesterol hydrogels. Langmuir, 24, 12559–12567. DOI: 10.1021/la8023748. http://dx.doi.org/10.1021/la802374810.1021/la8023748Search in Google Scholar

[53] van den Berg, M. E. L., Castellote, J. M., de Pedro-Cuesta, J., & Mahillo-Fernandez, I. (2010a). Survival after spinal cord injury: A systematic review. Journal of Neurotrauma, 27, 1517–1528. DOI: 10.1089/neu.2009.1138. http://dx.doi.org/10.1089/neu.2009.113810.1089/neu.2009.1138Search in Google Scholar

[54] van den Berg, M. E. L., Castellote, J. M., Mahillo-Fernandez, I., & de Pedro-Cuesta, J. (2010b). Incidence of spinal cord injury worldwide: A systematic review. Neuroepidemiology, 34, 184–192. DOI: 10.1159/000279335. http://dx.doi.org/10.1159/00027933510.1159/000279335Search in Google Scholar

[55] Varghese, O. P., Sun, W., Hilborn, J., & Ossipov, D. A. (2009). In situ cross-linkable high molecular weight hyaluronanbisphosphonate conjugate for localized delivery and cellspecific targeting: A hydrogel linked prodrug approach. Journal of the American Chemical Society, 131, 8781–8784. DOI: 10.1021/ja902857b. http://dx.doi.org/10.1021/ja902857b10.1021/ja902857bSearch in Google Scholar

[56] Willerth, S. M., & Sakiyama-Elbert, S. E. (2007). Approaches to neural tissue engineering using scaffolds for drug delivery. Advanced Drug Delivery Reviews, 59, 325–338. DOI: 10.1016/j.addr.2007.03.014. http://dx.doi.org/10.1016/j.addr.2007.03.01410.1016/j.addr.2007.03.014Search in Google Scholar

[57] Woerly, S., Pinet, E., de Robertis, L., Van Diep, D., & Bousmina, M. (2001). Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGelTM). Biomaterials, 22, 1095–1111. DOI: 10.1016/s0142-9612(00)00354-9. http://dx.doi.org/10.1016/S0142-9612(00)00354-910.1016/S0142-9612(00)00354-9Search in Google Scholar

[58] Zhong, Y., & Bellamkonda, R. V. (2008). Biomaterials for the central nervous system. Journal of the Royal Society Interface, 5, 957–975. DOI: 10.1098/rsif.2008.0071. http://dx.doi.org/10.1098/rsif.2008.007110.1098/rsif.2008.0071Search in Google Scholar PubMed PubMed Central

Published Online: 2011-11-23
Published in Print: 2012-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0111-5/html
Scroll to top button