Startseite Reduction of ostazine dyes’ photodynamic effect by Fenton reaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reduction of ostazine dyes’ photodynamic effect by Fenton reaction

  • Tomáš Mackuľak EMAIL logo , Miroslava Smolinská , Petra Olejníková , Josef Prousek und Alžbeta Takáčová
Veröffentlicht/Copyright: 23. November 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this work was to evaluate the influence of ostazine dyes on the microbial population in environment. These dyes act as photosensitizers after irradiation by visible light. The photodynamic effect was induced in this way. The effect of irradiated water solutions of ostazine green, ostazine yellow, and ostazine blue on the Escherichia coli growth was tested. Furthermore, the effect of these dyes (at c = 3.5 μg mL−1) on bacterial growth was evaluated after their pretreatment by the Fenton reaction. Dramatic changes in dyes’ toxicity were observed after coloured solutions were pretreated by the Fenton reaction.

[1] Bouasla, C., El-Hadi Samar, M., & Ismail, F. (2010). Degradation of methyl violet 6B dye by the Fenton process. Desalination, 254, 35–41. DOI: 10.1016/j.desal.2009.12.017. http://dx.doi.org/10.1016/j.desal.2009.12.01710.1016/j.desal.2009.12.017Suche in Google Scholar

[2] Čík, G., Bujdáková, H., & Šeršeň, F. (2001). Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere, 44, 313–319. http://dx.doi.org/10.1016/S0045-6535(00)00306-410.1016/S0045-6535(00)00306-4Suche in Google Scholar

[3] Daud, N. K., Ahmad, M. A., & Hameed, B. H. (2010). Decolorization of Acid Red 1 dye solution by Fenton-like process using Fe-montmorillonite K10 catalyst. Chemical Engineering Journal, 165, 111–116. DOI: 10.1016/j.cej.2010.08.072. http://dx.doi.org/10.1016/j.cej.2010.08.07210.1016/j.cej.2010.08.072Suche in Google Scholar

[4] de Aragão Umbuzeiro, G., Freeman, H., Warren, S. H., Palma de Oliveira, D., Terao, Y., Watanabe, T., & Claxton, L. D. (2005). The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 60, 55–64. DOI: 10.1016/j.chemosphere.2004.11.100. http://dx.doi.org/10.1016/j.chemosphere.2004.11.10010.1016/j.chemosphere.2004.11.100Suche in Google Scholar

[5] Derco, J., Gotvajn, A. Ž., Zagorc-Končan, J., Almásiová, B., & Kassai, A. (2010). Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 64, 237–245. DOI: 10.2478/s11696-009-0116-5. http://dx.doi.org/10.2478/s11696-009-0116-510.2478/s11696-009-0116-5Suche in Google Scholar

[6] Devi, G. V., Kumar, S. G., Raju, K. S. A., & Rajashekhar, K. E. (2010). Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron. Chemical Papers, 64, 378–385. DOI: 10.2478/s11696-010-0011-0. http://dx.doi.org/10.2478/s11696-010-0011-010.2478/s11696-010-0011-0Suche in Google Scholar

[7] Devi, L. G., Raju, K. S. A., Kumar, S.G., & Rajashekhar, K. E. (2011). Photo-degradation of di azo dye Bismarck Brown by advanced photo-Fenton process: Influence of inorganic anions and evaluation of recycling efficiency of iron powder. Journal of the Taiwan Institute of Chemical Engineers, 42, 341–349. DOI: 10.1016/j.jtice.2010.05.010. http://dx.doi.org/10.1016/j.jtice.2010.05.01010.1016/j.jtice.2010.05.010Suche in Google Scholar

[8] Dudová, B., Hudecová, D., Pokorny, R., Mičková, M., Segľa, P., & Melník, M. (2002). Copper complexes with bioactive ligands. Part II — Antifungal activity. Folia Microbiologica, 47, 225–229. DOI: 10.1007/BF02817642. http://dx.doi.org/10.1007/BF0281764210.1007/BF02817642Suche in Google Scholar

[9] El-Desoky, H. S., Ghoneim, M. M., & Zidan, N. M. (2010). Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264, 143–150. DOI: 10.1016/j.desal.2010.07.018. http://dx.doi.org/10.1016/j.desal.2010.07.01810.1016/j.desal.2010.07.018Suche in Google Scholar

[10] Feng, F., Xu, Z. L., Li, X. H., You, W. T., & Zhen, Y. (2010). Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process. Journal of Environmental Sciences, 22, 1657–1665. DOI: 10.1016/s1001-0742(09)60303-x. http://dx.doi.org/10.1016/S1001-0742(09)60303-X10.1016/S1001-0742(09)60303-XSuche in Google Scholar

[11] Fu, F. L., Wang, Q., & Tang, B. (2010). Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 174, 17–22. DOI: 10.1016/j.jhazmat.2009.09.009. http://dx.doi.org/10.1016/j.jhazmat.2009.09.00910.1016/j.jhazmat.2009.09.009Suche in Google Scholar

[12] Guillard, C., Lachheb, H., Houas, A., Ksibi, M., Elaloui, E., & Herrmann, J. M. (2003). Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 158, 27–36. DOI: 10.1016/s1010-6030(03)00016-9. http://dx.doi.org/10.1016/S1010-6030(03)00016-910.1016/S1010-6030(03)00016-9Suche in Google Scholar

[13] Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145–157. DOI: 10.1016/s0926-3373(00)00276-9. http://dx.doi.org/10.1016/S0926-3373(00)00276-910.1016/S0926-3373(00)00276-9Suche in Google Scholar

[14] Idel-aouad, R., Valiente, M., Yaacoubi, A., Tanouti, B., & López-Mesas, M. (2011). Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. Journal of Hazardous Materials, 186, 745–750. DOI: 10.1016/j.jhazmat.2010.11.056. http://dx.doi.org/10.1016/j.jhazmat.2010.11.05610.1016/j.jhazmat.2010.11.056Suche in Google Scholar

[15] Jantová, S., Hudecová, D., Stankovský, Š., Špirková K., & Ružeková, Ľ. (1995). Antibacterial effect of substituted 4-quinazolylhydrazines and their arylhydrazones determined by modified microdilution method. Folia Microbiologica, 40, 611–614. DOI: 10.1007/bf02818517. http://dx.doi.org/10.1007/BF0281851710.1007/BF02818517Suche in Google Scholar

[16] Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2005). Decolorization of various azo dyes by bacterial consortium. Dyes and Pigments, 67, 55–61. DOI: 10.1016/j.dyepig.2004.10.008. http://dx.doi.org/10.1016/j.dyepig.2004.10.00810.1016/j.dyepig.2004.10.008Suche in Google Scholar

[17] Konovalova, T. A., Lawrence, J., & Kispert, L. D. (2004). Generation of superoxide anion and most likely singlet oxygen in irradiated TiO2 nanoparticles modified by carotenoids. Journal of Photochemistry and Photobiology A: Chemistry, 162, 1–8. DOI: 10.1016/s1010-6030(03)00313-7. http://dx.doi.org/10.1016/S1010-6030(03)00313-710.1016/S1010-6030(03)00313-7Suche in Google Scholar

[18] Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26, 881–886. DOI: 10.1016/0043-1354(92)90192-7. http://dx.doi.org/10.1016/0043-1354(92)90192-710.1016/0043-1354(92)90192-7Suche in Google Scholar

[19] Kuo, W. S., & Ho, P. H. (2001). Solar photocatalytic decolorization of methylene blue in water. Chemosphere, 45, 77–83. DOI: 10.1016/s0045-6535(01)00008-x. http://dx.doi.org/10.1016/S0045-6535(01)00008-X10.1016/S0045-6535(01)00008-XSuche in Google Scholar

[20] Mackuľak, T., Olejníková, P., Prousek, J., & Švorc, Ľ. (2011). Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment. Chemical Papers, 65, 835–839. DOI: 10.2478/s11696-011-0075-5. http://dx.doi.org/10.2478/s11696-011-0075-510.2478/s11696-011-0075-5Suche in Google Scholar

[21] Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59, 73–84. DOI: 10.1016/j.ibiod.2006.08.006. http://dx.doi.org/10.1016/j.ibiod.2006.08.00610.1016/j.ibiod.2006.08.006Suche in Google Scholar

[22] Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure and Applied Chemistry, 79, 2325–2338. DOI: 10.1351/pac200779122325. http://dx.doi.org/10.1351/pac20077912232510.1351/pac200779122325Suche in Google Scholar

[23] Prousek, J., & Priesolová, S. (2002). Praktické použití kovového železa ve Fentonově reakci na čištěních barevných odpadních. Chemické Listy, 96, 893–896. Suche in Google Scholar

[24] Rajaguru, P., Vidya, L., Baskarasethupathi, B., Kumar, P. A., Palanivel, M., & Kalaiselvi, K. (2002). Genotoxicity evaluation of polluted ground water in human peripheral blood lymphocytes using the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 517, 29–37. DOI: 10.1016/s1383-5718(02)00025-6. http://dx.doi.org/10.1016/S1383-5718(02)00025-610.1016/S1383-5718(02)00025-6Suche in Google Scholar

[25] Salazar, R., Garcia-Segura, S., Ureta-Zañartu, M. S., & Brillas, E. (2011). Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochimica Acta, 56, 6371–6379. DOI: 10.1016/j.electacta.2011.05.021. http://dx.doi.org/10.1016/j.electacta.2011.05.02110.1016/j.electacta.2011.05.021Suche in Google Scholar

[26] Shu, H. Y., & Chang, M. C. (2005). Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dyes and Pigments, 65, 25–31. DOI: 10.1016/j.dyepig.2004.06.014. http://dx.doi.org/10.1016/j.dyepig.2004.06.01410.1016/j.dyepig.2004.06.014Suche in Google Scholar

[27] Soon, A. N., & Hameed, B. H. (2011). Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 269, 1–16. DOI: 10.1016/j.desal.2010.11.002. http://dx.doi.org/10.1016/j.desal.2010.11.00210.1016/j.desal.2010.11.002Suche in Google Scholar

[28] van der Zee, F. P., & Villaverde, S. (2005). Combined anaerobic-aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 39, 1425–1440. DOI: 10.1016/j.watres.2005.03.007. http://dx.doi.org/10.1016/j.watres.2005.03.00710.1016/j.watres.2005.03.007Suche in Google Scholar PubMed

[29] Wang, S. B., Li, H. T., & Xu, L. Y. (2006). Application of zeolite MCM-22 for basic dye removal from wastewater. Journal of Colloid and Interface Science, 295, 71–78. DOI: 10.1016/j.jcis.2005.08.006. http://dx.doi.org/10.1016/j.jcis.2005.08.00610.1016/j.jcis.2005.08.006Suche in Google Scholar PubMed

[30] Xu, L. J., & Wang, J. L. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186, 256–264. DOI: 10.1016/j.jhazmat.2010.10.116. http://dx.doi.org/10.1016/j.jhazmat.2010.10.11610.1016/j.jhazmat.2010.10.116Suche in Google Scholar PubMed

[31] Zhong, X., Royer, S., Zhang, H., Huang, Q. Q., Xiang, L. J., Valange, S., & Barrault, J. (2011). Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton processes. Separation and Purification Technology, 80, 163–171. DOI: 10.1016/j.seppur.2011.04.024. http://dx.doi.org/10.1016/j.seppur.2011.04.02410.1016/j.seppur.2011.04.024Suche in Google Scholar

Published Online: 2011-11-23
Published in Print: 2012-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0104-4/pdf
Button zum nach oben scrollen