Startseite A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units

  • Yongjun Lv EMAIL logo , Jian Xu , Yong Guo und Shijun Shao
Veröffentlicht/Copyright: 21. Mai 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel dicalix[4]pyrrolyl-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye I with an absorption peak at approximately 670 nm and an emission peak at about 690 nm was prepared. As an anion receptor, I displayed a red shift in absorption spectra and fluorescence quenching in varying degrees in the presence of F−, AcO−, H2PO4−, or Cl−. Compared with the parent calix[4]pyrrole, a representative anion receptor, I exhibited a stronger affinity to these anions due to the formation of a sandwich complex through multiple hydrogen-bonding interactions.

[1] Anzenbacher, P., Jr., Jursíková, K., & Sessler, J. L. (2000). Second generation calixpyrrole anion sensors. Journal of the American Chemical Society, 122, 9350–9351. DOI: 10.1021/ja001308t. http://dx.doi.org/10.1021/ja001308t10.1021/ja001308tSuche in Google Scholar

[2] Ballou, B., Ernst, L. A., & Waggoner, A. S. (2005). Fluorescence imaging of tumors in vivo. Current Medicinal Chemistry, 12, 795–805. DOI: 10.2174/0929867053507324. http://dx.doi.org/10.2174/092986705350732410.2174/0929867053507324Suche in Google Scholar

[3] Bianchi, A., Bowman-James, K., & Garcia-Espana, E. (1997). Supramolecular chemistry of anions. New York, NY, USA: Wiley-VCH. Suche in Google Scholar

[4] Caltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chemical Society Reviews, 38, 520–563. DOI: 10.1039/b806422a. http://dx.doi.org/10.1039/b806422a10.1039/B806422ASuche in Google Scholar

[5] Connors, K. A. (1987). Binding constants: The measurement of molecular complex stability. New York, NY, USA: Wiley-VCH. Suche in Google Scholar

[6] Coskun, A., Baytekin, B. T., & Akkaya, E. U. (2003). Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission. Tetrahedron Letters, 44, 5649–5651. DOI: 10.1016/S0040-4039(03)01365-0. http://dx.doi.org/10.1016/S0040-4039(03)01365-010.1016/S0040-4039(03)01365-0Suche in Google Scholar

[7] Ekmekci, Z., Yilmaz, M. D., & Akkaya, E. U. (2008). A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Organic Letters, 10, 461–464. DOI: 10.1021/ol702823u. http://dx.doi.org/10.1021/ol702823u10.1021/ol702823uSuche in Google Scholar PubMed

[8] Gale, P. A. (2008). Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing. Chemical Communications, 38, 4525–4540. DOI: 10.1039/b809508f. http://dx.doi.org/10.1039/b809508f10.1039/b809508fSuche in Google Scholar PubMed

[9] Gale, P. A., Sessler, J. L., Král, V., & Lynch, V. (1996). Calix[4]pyrroles: Old yet new anion-binding agents. Journal of the American Chemical Society, 118, 5140–5141. DOI: 10.1021/ja960307r. http://dx.doi.org/10.1021/ja960307r10.1021/ja960307rSuche in Google Scholar

[10] Gunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250, 3094–3117. DOI: 10.1016/j.ccr.2006.08.017. http://dx.doi.org/10.1016/j.ccr.2006.08.01710.1016/j.ccr.2006.08.017Suche in Google Scholar

[11] Kollmannsberger, M., Rurack, K., Resch-Genger, U., & Daub, J. (1998). Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: A new design concept for highly sensitive fluorescent probes. The Journal of Physical Chemistry A, 102, 10211–10220. DOI: 10.1021/jp982701c. http://dx.doi.org/10.1021/jp982701c10.1021/jp982701cSuche in Google Scholar

[12] Loudet, A., & Burgess, K. (2007). BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews, 107, 4891–4932. DOI: 10.1021/cr078381n. http://dx.doi.org/10.1021/cr078381n10.1021/cr078381nSuche in Google Scholar PubMed

[13] Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and chromogenic chemosensors and reagents for aions. Chemical Reviews, 103, 4419–4476. DOI: 10.1021/cr010421e. http://dx.doi.org/10.1021/cr010421e10.1021/cr010421eSuche in Google Scholar

[14] Mikláš, R., Kasák, P., Devínsky, F., & Putala, M. (2009). Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site. Chemical Papers, 63, 709–715. DOI: 10.2478/s11696-009-0079-6. http://dx.doi.org/10.2478/s11696-009-0079-610.2478/s11696-009-0079-6Suche in Google Scholar

[15] Miyaji, H., Anzenbacher, P., Jr., Sessler, J. L., Bleasdale, E. R., & Gale, P. A. (1999). Anthracene-linked calix[4]pyrroles: Fluorescent chemosensors for anions. Chemical Communications, 17, 1723–1724. DOI: 10.1039/a905054j. http://dx.doi.org/10.1039/a905054j10.1039/a905054jSuche in Google Scholar

[16] Miyaji, H., Sato, W., & Sessler, J. L. (2000). Naked-eye detection of anions in dichloromenthane: Colorimetric anion sensors based on calix[4]pyrrole. Angewandte Chemie International Edition, 39, 1777–17780. DOI: 10.1002/(SICI)1521-3773(20000515)39:10〈1777::AID-ANIE1777〉3.0.CO;2-E. http://dx.doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1777::AID-ANIE1777>3.0.CO;2-E10.1002/(SICI)1521-3773(20000515)39:10<1777::AID-ANIE1777>3.0.CO;2-ESuche in Google Scholar

[17] Nishiyabu, R., & Anzenbacher, P., Jr. (2006). 1,3-indane-based chromogenic calixpyrroles with push-pull chromophores: Synthesis and anion sensing. Organic Letters, 8, 359–362. DOI: 10.1021/ol0521782. http://dx.doi.org/10.1021/ol052178210.1021/ol0521782Suche in Google Scholar

[18] Piatek, P., Lynch, V. M., & Sessler, J. L. (2004). Calix[4]pyrrole[2]carbazole: A new kind of expanded calixpyrrole. Journal of the American Chemical Society, 126, 16073–16076. DOI: 10.1021/ja045218q. http://dx.doi.org/10.1021/ja045218q10.1021/ja045218qSuche in Google Scholar

[19] Qian, G., Li, X., & Wang, Z. (2009). Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide. Journal of Materials Chemistry, 19, 522–530. DOI: 10.1039/b813478b. http://dx.doi.org/10.1039/b813478b10.1039/B813478BSuche in Google Scholar

[20] Shiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY-indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50, 4293–4296. DOI: 10.1016/j.tetlet.2009.05.018. http://dx.doi.org/10.1016/j.tetlet.2009.05.01810.1016/j.tetlet.2009.05.018Suche in Google Scholar

[21] Shortreed, M., Kopelman, R., Kuhn, M., & Hoyland, B. (1996). Fluorescent fiber-optic calcium sensor for physiological measurements. Analytical Chemistry, 68, 1414–1418. DOI: 10.1021/ac950944k. http://dx.doi.org/10.1021/ac950944k10.1021/ac950944kSuche in Google Scholar

[22] Valeur, B. (2002). Molecular fluorescence: Principles and applications. New York, NY, USA: Wiley-VCH. Suche in Google Scholar

[23] Zhang, X., Li, C., Cheng, X., Wang, X., & Zhang, B. (2008a). A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion. Sensors and Actuators B: Chemical, 129, 152–157. DOI: 10.1016/j.snb.2007.07.094. http://dx.doi.org/10.1016/j.snb.2007.07.09410.1016/j.snb.2007.07.094Suche in Google Scholar

[24] Zhang, X., Xiao, Y., & Qian, X. (2008b). Highly efficient energy transfer in the light harvesting system composed of three kinds of boron-dipyrromethene derivatives. Organic Letters, 10, 29–32. DOI: 10.1021/ol702381j. http://dx.doi.org/10.1021/ol702381j10.1021/ol702381jSuche in Google Scholar PubMed

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
  2. Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
  3. Interaction of Moringa oleifera seed lectin with humic acid
  4. Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
  5. Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
  6. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
  7. Anaerobic treatment of biodiesel by-products in a pilot scale reactor
  8. Preparation of magnesium hydroxide from nitrate aqueous solution
  9. Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
  10. Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
  11. Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
  12. Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
  13. Theoretical thermo-optical patterns relevant to glass crystallisation
  14. Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
  15. Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
  16. An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
  17. An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
  18. Stereoselective synthesis of the polar part of mycestericins E and G
  19. A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
  20. Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
  21. A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
  22. What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
  23. MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0033-2/html?lang=de
Button zum nach oben scrollen