Abstract
The aim of this work was to characterise the affinity of protein preparations from Moringa oleifera seeds, specifically extract (seeds homogenised with 0.15 M NaCl), fraction (extract precipitated with 390 mg mL−1 of ammonium sulphate) and cMoL (coagulant M. oleifera lectin) to bind humic acids using a haemagglutinating activity assay with rabbit erythrocytes and a radial diffusion assay in agarose gel. Specific haemagglutinating activity (SHA) decreased by 94 % for the extract and cMoL and by 50 % for the fraction in the presence of humic acid. Precipitation bands were observed in the diffusion gel. Both results suggested humic acid-cMoL binding. Carbohydrates, potassium, and calcium ions and pH affected the SHA of cMoL. As an example of application, cMoL was immobilised on a column packed with sepharose receiving 20 mg mL−1 of carbon humic acid solution, 30 mg of humic acid per gram of support was removed. This result suggested that protein preparations might be used in water treatment to remove humic acids.
[1] Aniulyte, J., Liesiene, J., & Niemeyer, B. (2006). Evaluation of cellulose-based biospecific adsorbents as a stationary phase for lectin affinity chromatography. Journal of Chromatography B, 831, 24–30. DOI: 10.1016/j.jchromb.2005.11.016. http://dx.doi.org/10.1016/j.jchromb.2005.11.01610.1016/j.jchromb.2005.11.016Search in Google Scholar
[2] Barreto, S. R. G., Nozaki, J., & Barreto, W. J. (2003). Origin of dissolved organic carbon studied by UV-vis spectroscopy. Acta Hydrochimica et Hydrobiologica, 31, 513–518. DOI: 10.1002/aheh.200300510. http://dx.doi.org/10.1002/aheh.20030051010.1002/aheh.200300510Search in Google Scholar
[3] Correia, M. T. S., & Coelho, L. C. B. B. (1995). Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis mart. (Camaratu bean). Applied Biochemistry and Biotechnology, 55, 261–273. DOI: 10.1007/BF02786865. http://dx.doi.org/10.1007/BF0278686510.1007/BF02786865Search in Google Scholar
[4] Correia, M. T. S., Coelho, L. C. B. B., & Paiva, P. M. G. (2008). Lectins, carbohydrate recognition molecules: Are they toxic? Recent Trends in Toxicology, 37, 47–59. Search in Google Scholar
[5] Del Sol, F. G., Cavada, B. S., & Calvete, J. J. (2007). Crystal structures of Cratylia floribunda seed lectin at acidic and basic pHs. Insights into the structural basis of the pHdependent dimer-tetramer transition. Journal of Structural Biology, 158, 1–9. DOI: 10.1016/j.jsb.2006.08.014. http://dx.doi.org/10.1016/j.jsb.2006.08.01410.1016/j.jsb.2006.08.014Search in Google Scholar
[6] Eish, M. Y. Z. A., & Wells, M. J. M. (2006). Assessing the trihalomethane formation potential of aquatic fulvic and humic acids fractionated using thin-layer chromatography. Journal of Chromatography A, 1116, 272–276. DOI: 10.1016/j.chroma.2006.03.064. http://dx.doi.org/10.1016/j.chroma.2006.03.06410.1016/j.chroma.2006.03.064Search in Google Scholar
[7] Elgavish, S., & Shaanan, B. (1997). Lectin-carbohydrate interactions: different folds, common recognition principles. Trends in Biochemical Sciences, 22, 462–467. DOI: 10.1016/S0968-0004(97)01146-8. http://dx.doi.org/10.1016/S0968-0004(97)01146-810.1016/S0968-0004(97)01146-8Search in Google Scholar
[8] Favacho, A. R. M., Cintra, E. A., Coelho, L. C. B. B., & Linhares, M. I. S. (2007). In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals, 35, 189–194. DOI: 10.1016/j.biologicals.2006.09.005. http://dx.doi.org/10.1016/j.biologicals.2006.09.00510.1016/j.biologicals.2006.09.005Search in Google Scholar
[9] Fraguas, L. F., Batista-Viera, F., & Carlsson, J. (2004). Preparation of high-density Concanavalin A adsorbent and its use for rapid, high-yield purification of peroxidase from horseradish roots. Journal of Chromatography B, 803, 237–241. DOI: 10.1016/j.jchromb.2003.12.023. http://dx.doi.org/10.1016/j.jchromb.2003.12.02310.1016/j.jchromb.2003.12.023Search in Google Scholar
[10] Franco-Fraguas, L., Plá, A., Ferreira, F., Massaldi, H., Suárez, N., & Batista-Viera, F. (2003). Preparative purification of soybean agglutinin by affinity chromatography and its immobilization for polysaccharide isolation. Journal of Chromatography B, 790, 365–372. DOI: 10.1016/S1570-0232(03)00086-2. http://dx.doi.org/10.1016/S1570-0232(03)00086-210.1016/S1570-0232(03)00086-2Search in Google Scholar
[11] Ghebremichael, K. A., Gunaratna, K. R., Henriksson, H., Brumer, H., & Dalhammar, G. (2005). A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, 39, 2338–2344. DOI: 10.1016/j.watres.2005.04.012. http://dx.doi.org/10.1016/j.watres.2005.04.01210.1016/j.watres.2005.04.012Search in Google Scholar PubMed
[12] Grazu, V., Betancor, L., Montes, T., Lopez-Gallego, F., Guisan, J. M., & Fernandez-Lafuente, R. (2006). Glyoxyl agarose as a new chromatographic matrix. Enzyme and Microbial Technology, 38, 960–966. DOI: 10.1016/j.enzmictec.2005.08.034. http://dx.doi.org/10.1016/j.enzmictec.2005.08.03410.1016/j.enzmictec.2005.08.034Search in Google Scholar
[13] Kaur, A., Singh, J., Kamboj, S. S., Sexana, A. K., Pandita, R. M., & Shamnugavel, M. (2005). Isolation of an N-acetyl-D-glucosamine specific lectin from the rhizomes of Arundo donax with antiproliferative activity. Phytochemistry, 66, 1933–1940. DOI: 10.1016/j.phytochem.2005.06.026. http://dx.doi.org/10.1016/j.phytochem.2005.06.02610.1016/j.phytochem.2005.06.026Search in Google Scholar
[14] Kelly, L. S., Kozak, M., Walker, T., Pierce, M., & Puett, D. (2005). Lectin immunoassays using antibody fragments to detect glycoforms of human chorionic gonadotropin secreted by choriocarcinoma cells. Analytical Biochemistry, 338, 253–262. DOI: 10.1016/j.ab.2004.12.011. http://dx.doi.org/10.1016/j.ab.2004.12.01110.1016/j.ab.2004.12.011Search in Google Scholar
[15] Kumari, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2006). Biosorption studies on shelled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing, 78, 131–139. DOI: 10.1016/j.minpro.2005.10.001. http://dx.doi.org/10.1016/j.minpro.2005.10.00110.1016/j.minpro.2005.10.001Search in Google Scholar
[16] Le-Clech, P., Lee, E.-K., & Chen, V. (2006). Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Research, 40, 323–330. DOI: 10.1016/j.watres.2005.11.011. http://dx.doi.org/10.1016/j.watres.2005.11.01110.1016/j.watres.2005.11.011Search in Google Scholar
[17] Lima, V. L. M., Correia, M. T. S., Cechinel, Y. M. N., Sampaio, C. A. M., Owen, J. S., & Coęlho, L. C. B. B. (1997). Immobilized Cratylia mollis lectin as a potential matrix to isolate plasma glycoproteins, including lecithin-cholesterol acyltransferase. Carbohydrate Polymers, 33, 27–32. DOI: 10.1016/S0144-8617(97)00034-9. http://dx.doi.org/10.1016/S0144-8617(97)00034-910.1016/S0144-8617(97)00034-9Search in Google Scholar
[18] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275. 10.1016/S0021-9258(19)52451-6Search in Google Scholar
[19] Maciel, E. V. M., Araújo-Filho, V. S., Nakazawa, M., Gomes, Y. M., Coelho, L. C. B. B., & Correia, M. T. S. (2004). Mitogenic activity of Cratylia mollis lectin on human lymphocytes. Biologicals, 32, 57–60. DOI: 10.1016/j.biologicals.2003.12.001. http://dx.doi.org/10.1016/j.biologicals.2003.12.00110.1016/j.biologicals.2003.12.001Search in Google Scholar PubMed
[20] Matilainen, A., Vieno, N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal. Environment International, 32, 324–331. DOI: 10.1016/j.envint.2005.06.003. http://dx.doi.org/10.1016/j.envint.2005.06.00310.1016/j.envint.2005.06.003Search in Google Scholar PubMed
[21] Monzo, A., Bonn, G. K., & Guttman, A. (2007). Lectinimmobilization strategies for affinity purification and separation of glycoconjugates. TrAC Trends in Analytical Chemistry, 26, 423–432. DOI: 10.1016/j.trac.2007.01.018. http://dx.doi.org/10.1016/j.trac.2007.01.01810.1016/j.trac.2007.01.018Search in Google Scholar
[22] Moriguchi, T., Yano, K., Tahara, M., & Yaguchi, K. (2005). Metal-modified silica adsorbents for removal of humic substances in water. Journal of Colloid and Interface Science, 283, 300–310. DOI: 10.1016/j.jcis.2004.09.019. http://dx.doi.org/10.1016/j.jcis.2004.09.01910.1016/j.jcis.2004.09.019Search in Google Scholar
[23] Okuda, T., Baes, A. U., Nishijima, W., & Okada, M. (1999). Improvement of extraction method of coagulation active components from Moringa oleifera seed. Water Research, 33, 3373–3378. DOI: 10.1016/S0043-1354(99)00046-9. http://dx.doi.org/10.1016/S0043-1354(99)00046-910.1016/S0043-1354(99)00046-9Search in Google Scholar
[24] Paiva, P. M. G., Souza, A. F., Oliva, M. L. V., Kennedy, J. F., Cavalcanti, M. S. M., Coelho, L. C. B. B., & Sampaio, C. A. M. (2003). Isolation of a trypsin inhibitor from Echinodorus paniculatus seeds by affinity chromatography on immobilized Cratylia mollis isolectins. Bioresource Technology, 88, 75–79. DOI: 10.1016/S0960-8524(02)00272-9. http://dx.doi.org/10.1016/S0960-8524(02)00272-910.1016/S0960-8524(02)00272-9Search in Google Scholar
[25] Pedroso, M. M., Watanabe, A. M., Roque-Barreira, M. C., Bueno, P. R., & Faria, R. C. (2008). Quartz Crystal Microbalance monitoring the real-time binding of lectin with carbohydrate with high and low molecular mass. Microchemical Journal, 89, 153–158. DOI: 10.1016/j.microc.2008.02.001. http://dx.doi.org/10.1016/j.microc.2008.02.00110.1016/j.microc.2008.02.001Search in Google Scholar
[26] Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352. DOI: 10.1104/pp.109.2.347. http://dx.doi.org/10.1104/pp.109.2.34710.1104/pp.109.2.347Search in Google Scholar
[27] Pritchard, M., Craven, T., Mkandawire, T., Edmondson, A. S., & O’Neill, J. G. (2010). A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water — An alternative sustainable solution for developing countries. Physics and Chemistry of the Earth, Parts A/B/C, 35, 798–805. DOI: 10.1016/j.pce.2010.07.014. http://dx.doi.org/10.1016/j.pce.2010.07.01410.1016/j.pce.2010.07.014Search in Google Scholar
[28] Rameshwaram, N. R., & Nadimpalli, S. K. (2008). An efficient method for the purification and quantification of a galactose-specific lectin from vegetative tissues of Dolichos lablab. Journal of Chromatography B, 861, 209–217. DOI: 10.1016/j.jchromb.2007.09.020. http://dx.doi.org/10.1016/j.jchromb.2007.09.02010.1016/j.jchromb.2007.09.020Search in Google Scholar
[29] Sánchez-Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 70, 193–201. DOI: 10.1016/S0960-8524(99)00018-8. http://dx.doi.org/10.1016/S0960-8524(99)00018-810.1016/S0960-8524(99)00018-8Search in Google Scholar
[30] Santos, A. F. S., Argolo, A. C. C., Coelho, L. C. B. B., & Paiva, P. M. G. (2005). Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds. Water Research, 39, 975–980. DOI: 10.1016/j.watres.2004.12.016. http://dx.doi.org/10.1016/j.watres.2004.12.01610.1016/j.watres.2004.12.016Search in Google Scholar PubMed
[31] Santos, A. F. S., Luz, L. A., Argolo, A. C. C., Teixeira, J. A., Paiva, P. M. G., & Coelho, L. C. B. B. (2009). Isolation of a seed coagulant Moringa oleifera lectin. Process Biochemistry, 44, 504–408. DOI: 10.1016/j.procbio.2009.01.002. http://dx.doi.org/10.1016/j.procbio.2009.01.00210.1016/j.procbio.2009.01.002Search in Google Scholar
[32] Scott, B. F., MacTavish, D., Spencer, C., Strachan, W. M. J., & Muir, D. C. G. (2000). Haloacetic acids in Canadian lake waters and precipitation. Environmental Science & Technology, 34, 4266–4272. DOI: 10.1021/es9908523. http://dx.doi.org/10.1021/es990852310.1021/es9908523Search in Google Scholar
[33] Shin, H.-S., Monsallier, J. M., & Choppin, G. R. (1999). Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta, 50, 641–647. DOI: 10.1016/S0039-9140(99)00161-7. http://dx.doi.org/10.1016/S0039-9140(99)00161-710.1016/S0039-9140(99)00161-7Search in Google Scholar
[34] Shirshova, L. T., Ghabbour, E. A., & Davies, G. (2006). Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma, 133, 204–216. DOI: 10.1016/j.geoderma.2005.07.007. http://dx.doi.org/10.1016/j.geoderma.2005.07.00710.1016/j.geoderma.2005.07.007Search in Google Scholar
[35] Wong, J. H., & Ng, T. B. (2006). Isolation and characterization of a glucose/mannose-specific lectin with stimulatory effect on nitric oxide production by macrophages from the emperor banana. The International Journal of Biochemistry & Cell Biology, 38, 234–243. DOI: 10.1016/j.biocel.2005.09.004. http://dx.doi.org/10.1016/j.biocel.2005.09.00410.1016/j.biocel.2005.09.004Search in Google Scholar PubMed
[36] Xu, D., Zhu, S., Chen, H., & Li, F. (2006). Structural characterization of humic acids isolated from typical soils in China and their adsorption characteristics to phenanthrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276, 1–7. DOI: 10.1016/j.colsurfa.2005.09.038. http://dx.doi.org/10.1016/j.colsurfa.2005.09.03810.1016/j.colsurfa.2005.09.038Search in Google Scholar
[37] Yan, M., Wang, D., You, S., Qu, J., & Tang, H. (2006). Enhanced coagulation in a typical North-China water treatment plant. Water Research, 40, 3621–3627. DOI: 10.1016/j. watres.2006.05.044. http://dx.doi.org/10.1016/j.watres.2006.05.04410.1016/j.watres.2006.05.044Search in Google Scholar PubMed
[38] Yan, Q., Jiang, Z., Yang, S., Deng, W., & Han, L. (2005). A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Archives of Biochemistry and Biophysics, 442, 72–81. DOI: 10.1016/j.abb.2005.07.019. http://dx.doi.org/10.1016/j.abb.2005.07.01910.1016/j.abb.2005.07.019Search in Google Scholar PubMed
[39] Zhou, P., Yan, H., & Gu, B. (2005). Competitive complexation of metal ions with humic substances. Chemosphere, 58, 1327–1337. DOI: 10.1016/j.chemosphere.2004.10.017. http://dx.doi.org/10.1016/j.chemosphere.2004.10.01710.1016/j.chemosphere.2004.10.017Search in Google Scholar PubMed
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
- Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
- Interaction of Moringa oleifera seed lectin with humic acid
- Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
- Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
- Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
- Anaerobic treatment of biodiesel by-products in a pilot scale reactor
- Preparation of magnesium hydroxide from nitrate aqueous solution
- Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
- Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
- Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
- Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
- Theoretical thermo-optical patterns relevant to glass crystallisation
- Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
- Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
- An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
- An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
- Stereoselective synthesis of the polar part of mycestericins E and G
- A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
- Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
- A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
- What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
- MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Articles in the same Issue
- Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
- Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
- Interaction of Moringa oleifera seed lectin with humic acid
- Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
- Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
- Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
- Anaerobic treatment of biodiesel by-products in a pilot scale reactor
- Preparation of magnesium hydroxide from nitrate aqueous solution
- Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
- Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
- Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
- Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
- Theoretical thermo-optical patterns relevant to glass crystallisation
- Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
- Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
- An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
- An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
- Stereoselective synthesis of the polar part of mycestericins E and G
- A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
- Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
- A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
- What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
- MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity