Home Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
Article
Licensed
Unlicensed Requires Authentication

Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate

  • Stacey Haskins EMAIL logo , David Kelly and Ron Weir
Published/Copyright: May 21, 2011
Become an author with De Gruyter Brill

Abstract

Lipid retention in novel pressurized solvent extraction vessels was examined as a function of static and flushing cycles, flushing flow rate and flush volume in an effort to decrease lipid elution after extraction. Results indicate that none of these variables plays a pivotal role in lipid retention within this system. Regardless of which variable was altered, lipid elution remained virtually constant at (55 ± 7) %. Findings suggest that lipid elution has more to do with the high flow rate at which extracts are purged from the system at the end of the static cycle.

[1] Applied Separations (2010). Pressurized solvent extraction fast PSE. Retrieved July 24, 2010, from http://www.appliedseparations.com/pse/fast_PSE Search in Google Scholar

[2] Björklund, E., Müller, A., & von Holst, C. (2001). Comparison of fat retainers in accelerated solvent extraction for the selective extraction of PCBs from fat-containing samples. Analytical Chemistry, 73, 4050–4053. DOI: 10.1021/ac010178j. http://dx.doi.org/10.1021/ac010178j10.1021/ac010178jSearch in Google Scholar

[3] Björklund, E., von Holst, C., & Anklam, E. (2002). Fast extraction, clean-up and detection methods for the rapid analysis and screening of seven indicator PCBs in food matrices. TrAC Trends in Analytical Chemistry, 21, 40–53. DOI: 10.1016/S0165-9936(01)00120-0. http://dx.doi.org/10.1016/S0165-9936(01)00120-010.1016/S0165-9936(01)00120-0Search in Google Scholar

[4] Carabias-Martínez, R., Rodríguez-Gonzalo, E., Reilla-Ruiz, P., & Hernández-Méndez, J. (2005). Pressurized liquid extraction in the analysis of food and biological samples. Journal of Chromatography A, 1089, 1–17. DOI: 10.1016/j.chroma.2005.06.072. http://dx.doi.org/10.1016/j.chroma.2005.06.07210.1016/j.chroma.2005.06.072Search in Google Scholar

[5] Carroll, K. K. (1961). Separation of lipid classes by chromatography on florisil. Journal of Lipid Research, 2, 135–141. 10.1016/S0022-2275(20)39021-0Search in Google Scholar

[6] Dionex Corporation (2010). News and product update. Journal of Medical Engineering and Technology, 34, 360–363. DOI: 10.3109/03091902.2010.506143. 10.3109/03091902.2010.506143Search in Google Scholar

[7] Fernández Moreno, J. L., Arrebola Liébanas, F. J., Garrido Frenich, A., & Martínez Vidal, J. L. (2006). Evaluation of different sample treatments for determining pesticide residues in fat vegetable matrices like avocado by low-pressure gas chromatography-tandem mass spectrometry. Journal of Chromatography A, 1111, 97–105. DOI: 10.1016/j.chroma.2006.01.108. http://dx.doi.org/10.1016/j.chroma.2006.01.10810.1016/j.chroma.2006.01.108Search in Google Scholar

[8] Frings, C. S., Fendley, T. W., Dunn, R. T., & Queen, C. A. (1972). Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clinical Chemistry, 18, 673–674. 10.1093/clinchem/18.7.673Search in Google Scholar

[9] Garrido Frenich, A., Martinez, J. L., & Covaci, A. (2008). Determinations of pesticides in food of animal origin. In J. L. Tadeo (Ed.), Analysis of pesticides in food and environmental samples (pp. 177–206). Boca Raton, FL, USA: CRC Press. DOI: 10.1201/9781420007756.ch7. 10.1201/9781420007756.ch7Search in Google Scholar

[10] Gómez-Ariza, J. L., Bujalance, M., Giráldez, I., Velasco, A., & Morales, E. (2002). Determination of polychlorinated biphenyls in biota samples using simultaneous pressurized liquid extraction and purification. Journal of Chromatography A, 946, 209–219. DOI: 10.1016/S0021-9673(01)01534-5. http://dx.doi.org/10.1016/S0021-9673(01)01534-510.1016/S0021-9673(01)01534-5Search in Google Scholar

[11] Hamilton, J. G., & Comai, K. (1988). Rapid separation of neutral lipids, free fatty acids and polar lipids using pre-packed sep-Pak columns. Lipids, 23, 1146–1149. DOI: 10.1007/BF02535281. http://dx.doi.org/10.1007/BF0253528110.1007/BF02535281Search in Google Scholar PubMed

[12] Haskins, S. D., Kelly, D. G., & Weir, R. D. (2010). Novel pressurized solvent extraction vessels for the analysis of polychlorinated biphenyl congeners in avian whole blood. Analytica Chimica Acta, 677, 19–23. DOI:10.1016/j.aca.2009.12.036. http://dx.doi.org/10.1016/j.aca.2009.12.03610.1016/j.aca.2009.12.036Search in Google Scholar

[13] Holden, A. V., & Marsden, K. (1969). Single-stage cleanup of animal tissue extracts for organochlorine residue analysis. Journal of Chromatography, 44, 481–492. DOI: 10.1016/S0021-9673(01)92572-5. http://dx.doi.org/10.1016/S0021-9673(01)92572-510.1016/S0021-9673(01)92572-5Search in Google Scholar

[14] Keller, J. M., Swarthout, R. F., Carlson, B. K. R., Yordy, J., Guichard, A., Schantz, M.M., & Kucklick, J. R. (2009). Comparison of five extraction methods for measuring PCBs, PBDEs, organochlorine pesticides, and lipid content in serum. Analytical and Bioanalytical Chemistry, 393, 747–760. DOI: 10.1007/s00216-008-2453-6. http://dx.doi.org/10.1007/s00216-008-2453-610.1007/s00216-008-2453-6Search in Google Scholar

[15] Knight, J. A., Anderson, S., & Rawle, J. M. (1972). Chemical basis of the sulpho-phospho-vanillin reaction for estimating total serum lipids. Clinical Chemistry, 18, 199–202. 10.1093/clinchem/18.3.199Search in Google Scholar

[16] Lacorte, S., & Guillamon, M. (2008). Validation of a pressurized solvent extraction and GC-NCI-MS method for the low level determination of 40 polybrominated diphenyl ethers in mothers’ milk. Chemosphere, 73, 70–75. DOI: 10.1016/j.chemosphere.2008.05.021. http://dx.doi.org/10.1016/j.chemosphere.2008.05.02110.1016/j.chemosphere.2008.05.021Search in Google Scholar

[17] McCant, D. D., Inoye, L. S., & McFarland, V. A. (1999). A onestep ASETMextraction method for TCDD TEQ determination. Bulletin of Environmental Contamination and Toxicology, 63, 282–288. DOI: 10.1007/s001289900978. http://dx.doi.org/10.1007/s00128990097810.1007/s001289900978Search in Google Scholar

[18] Müller, A., Björklund, E., & von Holst, C. (2001). On-line cleanup of pressurized liquid extracts for the determination of polychlorinated biphenyls in feedingstuffs and food matrices using gas chromatography-mass spectrometry. Journal of Chromatography A, 925, 197–205. DOI: 10.1016/S0021-9673(01)01028-7. http://dx.doi.org/10.1016/S0021-9673(01)01028-710.1016/S0021-9673(01)01028-7Search in Google Scholar

[19] Pauwels, A., Wells, D. A., Covaci, A., & Schepens, P. J. C. (1999). Improved sample preparation method for selected persistent organochlorine pollutants in human serum using solid-phase disk extraction with gas chromatographic analysis. Journal of Chromatography B, 723, 117–125. DOI: 10.1016/S0378-4347(98)00493-9. http://dx.doi.org/10.1016/S0378-4347(98)00493-910.1016/S0378-4347(98)00493-9Search in Google Scholar

[20] Popp, P., Keil, P., Möder, M., Paschke, A., & Thuss, U. (1997). Application of accelerated solvent extraction followed by gas chromatography, high-performance liquid chromatography and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans in solid wastes. Journal of Chromatography A, 774, 203–211. DOI: 10.1016/S0021-9673(97)00337-3. http://dx.doi.org/10.1016/S0021-9673(97)00337-310.1016/S0021-9673(97)00337-3Search in Google Scholar

[21] Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: A technique for sample preparation. Analytical Chemistry, 68, 1033–1039. DOI: 10.1021/ac9508199. http://dx.doi.org/10.1021/ac950819910.1021/ac9508199Search in Google Scholar

[22] Saim, N., Dean, J. R., Abdullah, Md. P., & Zakaria, Z. (1997). Extraction of polycyclic aromatic hydrocarbons from contaminated soil using Soxhlet extraction, pressurized and atmospheric microwave-assisted extraction, supercritical fluid extraction and accelerated solvent extraction. Journal of Chromatography A, 791, 361–366. DOI: 10.1016/S0021-9673(97)00768-1. http://dx.doi.org/10.1016/S0021-9673(97)00768-110.1016/S0021-9673(97)00768-1Search in Google Scholar

[23] Schantz, M. M., Nichols, J. J., & Wise, S. A. (1997). Evaluation of pressurized fluid extraction for the extraction of environmental matrix reference materials. Analytical Chemistry, 69, 4210–4219. DOI: 10.1021/ac970299c. http://dx.doi.org/10.1021/ac970299c10.1021/ac970299cSearch in Google Scholar

[24] Sporring, S., & Björklund, E. (2004). Selective pressurized solvent extraction of polychlorinated biphenyls from fatcontaining food and feed sample: Influence of cell dimensions, solvent type, temperature and flush volume. Journal of Chromatography A, 1040, 155–161. DOI: 10.1016/j.chroma.2004.04.022. http://dx.doi.org/10.1016/j.chroma.2004.04.02210.1016/j.chroma.2004.04.022Search in Google Scholar PubMed

[25] Sporring, S., von Holst, C., & Björklund, E. (2006). Selective pressurized liquid extraction of PCB’s from food and feed samples: Effects of high lipid amounts and lipid type on fat retention. Chromatographia, 64, 553–557. DOI: 10.1365/s10337-006-0059-8. http://dx.doi.org/10.1365/s10337-006-0059-810.1365/s10337-006-0059-8Search in Google Scholar

[26] Waliszewski, St. M., & Szymczyński, G. A. (1990). Determination of phthalate esters in human semen. Andrologia, 22, 69–73. DOI: 10.1111/j.1439-0272.1990.tb01942.x. http://dx.doi.org/10.1111/j.1439-0272.1990.tb01942.x10.1111/j.1439-0272.1990.tb01942.xSearch in Google Scholar

[27] Wenzel, K.-D., Hubert, A., Manz, M., Weissflog, L., Engewald, W., & Schüürmann, G. (1998). Accelerated solvent extraction of semivolatile organic compounds from biomonitoring samples of pine needles and mosses. Analytical Chemistry, 70, 4827–4835. DOI: 10.1021/ac9806299. http://dx.doi.org/10.1021/ac980629910.1021/ac9806299Search in Google Scholar

Published Online: 2011-5-21
Published in Print: 2011-8-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Lipid retention of novel pressurized extraction vessels as a function of the number of static and flushing cycles, flush volume, and flow rate
  2. Determination of curcuminoids in substances and dosage forms by cyclodextrin-mediated capillary electrophoresis with diode array detection
  3. Interaction of Moringa oleifera seed lectin with humic acid
  4. Hybrid process scheme for the synthesis of ethyl lactate: conceptual design and analysis
  5. Zinc catalyst recycling in the preparation of (all-rac)-α-tocopherol from trimethylhydroquinone and isophytol
  6. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap
  7. Anaerobic treatment of biodiesel by-products in a pilot scale reactor
  8. Preparation of magnesium hydroxide from nitrate aqueous solution
  9. Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
  10. Synthesis and crystal and molecular structures of N,N′-methylenedipyridinium tetrachlorozincate(II) and N,N′-methylenedipyridinium tetrachlorocadmate(II)
  11. Effects of denaturing acid on the self-association behaviour of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in ethanol
  12. Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group
  13. Theoretical thermo-optical patterns relevant to glass crystallisation
  14. Morphology dependence of 1,2-diphenylethylenediamine-derived organogelator templates in solvents and their influence in the production of nanostructured silica
  15. Ferric hydrogensulphate as a recyclable catalyst for the synthesis of fluorescein derivatives
  16. An alternative synthetic process of p-acetaminobenzenesulfonyl chloride through combined chlorosulfonation by HClSO3 and PCl5
  17. An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2·6H2O under heterogeneous conditions
  18. Stereoselective synthesis of the polar part of mycestericins E and G
  19. A regio- and stereoselective three-component synthesis of 5-(trifluoromethyl)-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives under solvent-free conditions
  20. Precautions in using global kinetic and thermodynamic models for characterization of drug release from multivalent supports
  21. A sandwich anion receptor by a BODIPY dye bearing two calix[4]pyrrole units
  22. What causes iron-sulphur bonds in active sites of one-iron superoxide reductase and two-iron superoxide reductase to differ?
  23. MTD-PLS and docking study for a series of substituted 2-phenylindole derivatives with oestrogenic activity
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0022-5/pdf
Scroll to top button