Abstract
Adsorption of cetyltrimethylammonium bromide (CTAB) onto bituminous coal (BC) and a clay mineral, montmorillonite (MMT), was studied. Simultaneous measurements of the CTAB adsorption and zeta potential determination of the adsorption suspensions were carried out. The adsorption isotherms were found to be of the typical Langmuir type; values of the CTAB adsorption capacities were calculated (a m = 0.65 mmol g−1 for coal and a m = 3.24 mmol g−1 for MMT). The shape of the adsorption isotherms was correlated with zeta potential values at the adsorption equilibrium. The adsorption properties of both sorbents were studied by voltammetry on carbon paste electrodes (CPE) modified with coal-CTAB and MMT-CTAB system, respectively. Open circuit sorption with differential pulse voltammetry was performed in order to compare the sorption properties of the systems with the unmodified sorbents. The Cu2+ adsorption on BC and MMT decreased to approximately 50 % and 40 %, respectively. The surface adsorption mechanism of CTAB on coal based on hydrophilic interactions was proposed. In the case of montmorillonite, the CTAB intercalation is expected via ion exchange into the inter-layer space forming a double- or triple-layer arrangement.
[1] Başar, C. A., Karagunduz, A., Keskinler, B., & Cakici, A. (2003). Effect of presence of ions on surface characteristics of surfactant modified powdered activated carbon (PAC). Applied Surface Science, 218, 169–174. DOI: 10.1016/S0169-4332(03)00576-2. 10.1016/S0169-4332(03)00576-2Search in Google Scholar
[2] Betega de Paiva, L., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24. DOI: 10.1016/j.clay.2008.02.006. http://dx.doi.org/10.1016/j.clay.2008.02.00610.1016/j.clay.2008.02.006Search in Google Scholar
[3] Crawford, R. J., & Mainwaring, D. E. (2001). The influence of surfactant adsorption on the surface characterisation of Australian coals. Fuel, 80, 313–320. DOI: 10.1016/S0016-2361(00)00110-1. http://dx.doi.org/10.1016/S0016-2361(00)00110-110.1016/S0016-2361(00)00110-1Search in Google Scholar
[4] Gallardo-Moreno, A. M., González-García, C. M., González-Martín, M. L., & Bruque, J. M. (2004). Arrangement of SDS adsorbed layer on carbonaceous particles by zeta potential determinations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 249, 57–62. DOI: 10.1016/j.colsurfa.2004.08.051. http://dx.doi.org/10.1016/j.colsurfa.2004.08.05110.1016/j.colsurfa.2004.08.051Search in Google Scholar
[5] Gu, T., Zhu, B. Y., & Rupprecht, H. (1992). Surfactant adsorption and surface micellizations. Progress in Colloid and Polymer Science, 88, 74–85. DOI: 10.1007/BFb0114420. http://dx.doi.org/10.1007/BFb011442010.1007/BFb0114420Search in Google Scholar
[6] Hernández, M., Fernández, L., Borrás, C., Mostany, J., & Carrero, H. (2007). Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol. Analytica Chimica Acta, 597, 245–256. DOI: 10.1016/j.aca.2007.06.010. http://dx.doi.org/10.1016/j.aca.2007.06.01010.1016/j.aca.2007.06.010Search in Google Scholar PubMed
[7] Juang, R.-S., & Wu, W.-L. (2002). Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. Journal of Colloid and Interface Science, 249, 22–29. DOI: 10.1006/jcis.2002.8240. http://dx.doi.org/10.1006/jcis.2002.824010.1006/jcis.2002.8240Search in Google Scholar PubMed
[8] Kooli, F., Liu, Y., Alshahateet, S. F., Messali, M., & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Applied Clay Science, 43, 357–363. DOI: 10.1016/j.clay.2008.10.006. http://dx.doi.org/10.1016/j.clay.2008.10.00610.1016/j.clay.2008.10.006Search in Google Scholar
[9] Liu, X. Lu, R., Wang, R. C., Zhou, H., & Xu, S. (2007). Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water: A molecular dynamics study. Clays and Clay Minerals, 55, 554–564. DOI: 10.1346/CCMN.2007.0550602. http://dx.doi.org/10.1346/CCMN.2007.055060210.1346/CCMN.2007.0550602Search in Google Scholar
[10] Maršálek, R., & Taraba, B. (2008). Adsorption of the SDS on coal. Progress in Colloid and Polymer Science, 135, 163–168. DOI: 10.1007/978-3-540-85134-9. 10.1007/978-3-540-85134-9Search in Google Scholar
[11] Mishra, S. K., Kanungo, S. B., & Rajeev (2003). Adsorption of sodium dodecyl benzenesulfonate onto coal. Journal of Colloid and Interface Science, 267, 42–48. DOI: 10.1016/S0021-9797(03)00553-8. http://dx.doi.org/10.1016/S0021-9797(03)00553-810.1016/S0021-9797(03)00553-8Search in Google Scholar
[12] Navrátilová, Z. (2009). Coal as a new carbon paste electrode modifier with sorption properties. Electroanalysis, 21, 1758–1762. DOI: 10.1002/elan.200904657. http://dx.doi.org/10.1002/elan.20090465710.1002/elan.200904657Search in Google Scholar
[13] Navrátilová, Z., & Kula, P. (2000). Cation and anion exchange on clay modified electrodes. Journal of Solid State Electrochemistry, 4, 342–347. DOI: 10.1007/s100080000126. http://dx.doi.org/10.1007/s10008000012610.1007/s100080000126Search in Google Scholar
[14] Navrátilová, Z., & Vaculíková, L. (2006). Electrodeposition of mercury film on electrodes modified with clay minerals. Chemical Papers, 60, 348–352. DOI: 10.2478/s11696-006-0063-3. http://dx.doi.org/10.2478/s11696-006-0063-310.2478/s11696-006-0063-3Search in Google Scholar
[15] Navrátilová, Z., Wojtowicz, P., Vaculíková, L., & Šugárková, V. (2007). Sorption of alkylammonium cations on montmorillonite. Acta Geodynamica et Geomaterialia, 4(3), 59–65. Search in Google Scholar
[16] Ngameni, E., Tonlé, I. K., Apohkeng, J. T., Bouwé, R. G. B., Jieumboué, A. T, & Walcarius, A. (2006). Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis, 18, 2243–2250. DOI: 10.1002/elan.200603654. http://dx.doi.org/10.1002/elan.20060365410.1002/elan.200603654Search in Google Scholar
[17] Praus, P., Turicova, M., Študentova, S., & Ritz, M. (2006). Study of cetyltrimethylammonium and cetylpyridinium adsorption on montinorillonite. Journal of Colloid and Interface Science, 304, 29–36. DOI: 10.1016/j.jcis.2006.08.038. http://dx.doi.org/10.1016/j.jcis.2006.08.03810.1016/j.jcis.2006.08.038Search in Google Scholar
[18] Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.00210.1016/j.progpolymsci.2003.08.002Search in Google Scholar
[19] Rosen, M. J. (2004). Surfactants and interfacial phenomena (3rd ed.). Hoboken, NJ, USA: Wiley. DOI: 10.1002/0471670561. http://dx.doi.org/10.1002/047167056110.1002/0471670561Search in Google Scholar
[20] Singh, B. P. (1999). The role of surfactant adsorption in the improved dewatering of fine coal. Fuel, 78, 501–506. DOI: 10.1016/S0016-2361(98)00169-0. http://dx.doi.org/10.1016/S0016-2361(98)00169-010.1016/S0016-2361(98)00169-0Search in Google Scholar
[21] Taraba, B., Kula, P., & Gucka, M. (2001). Calorimetric study of interaction between surfactants and coals. In Proceedings of the International Slovak and Czech Calorimetric Seminar, 28 May–1 June 2001 (pp 49–50). Račkova dolina, Slovakia. Search in Google Scholar
[22] Vittal, R., Gomathi, H., & Kim, K.-J. (2006). Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Advances in Colloid and Interface Science, 119, 55–68. DOI: 10.1016/j.cis.2005.09.004. http://dx.doi.org/10.1016/j.cis.2005.09.00410.1016/j.cis.2005.09.004Search in Google Scholar PubMed
[23] Wu, H. S., & Pendleton, P. (2001). Adsorption of anionic surfactant by activated carbon: Effect of surface chemistry, ionic strength, and hydrophobicity. Journal of Colloid and Interface Science, 243, 306–315. DOI: 10.1006/jcis.2001.7905. http://dx.doi.org/10.1006/jcis.2001.790510.1006/jcis.2001.7905Search in Google Scholar
[24] Wu, S. F., Yanagisawa, K., & Nishizawa, T. (2001). ζ-potential on carbons and carbides. Carbon, 39, 1537–1541. DOI: 10.1016/S0008-6223(00)00275-X. http://dx.doi.org/10.1016/S0008-6223(00)00275-X10.1016/S0008-6223(00)00275-XSearch in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters
- Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
- Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system
- Synthesis, crystal structure, and thermal analysis of a copper(II) complex with imidazo[4,5-f]1,10-phenantroline
- Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
- Optical characterisation of organosilane-modified nanocrystalline diamond films
- Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
- A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
- Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas
- Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
- Comparative study of CTAB adsorption on bituminous coal and clay mineral
- Density of the systems (NaF/AlF3)—AlPO4 and (NaF/AlF3)—NaVO3
- Semiquinol and phenol compounds from seven Senecio species
- Determination of the enthalpy of fusion of K3NbO2F4
Articles in the same Issue
- Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters
- Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
- Effect of fiber modification with carboxymethyl cellulose on the efficiency of a microparticle flocculation system
- Synthesis, crystal structure, and thermal analysis of a copper(II) complex with imidazo[4,5-f]1,10-phenantroline
- Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties
- Optical characterisation of organosilane-modified nanocrystalline diamond films
- Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles
- A new group of potential antituberculotics: N-(2-pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides
- Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas
- Synthesis, characterisation, and biological activity of three new amide prodrugs of lamotrigine with reduced hepatotoxicity
- Comparative study of CTAB adsorption on bituminous coal and clay mineral
- Density of the systems (NaF/AlF3)—AlPO4 and (NaF/AlF3)—NaVO3
- Semiquinol and phenol compounds from seven Senecio species
- Determination of the enthalpy of fusion of K3NbO2F4