Home ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
Article
Licensed
Unlicensed Requires Authentication

ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon

  • Josef Pola EMAIL logo , Anna Galíková , Jan Šubrt and Akihiko Ouchi
Published/Copyright: August 14, 2010
Become an author with De Gruyter Brill

Abstract

MW ArF laser irradiation of gaseous cis-dichloroethene results in fast decomposition of this compound and in deposition of solid ultrafine Cl- and H-containing carbonaceous powder which is of interest due to its sub-microscopic structure and possible reactive modification of the C-Cl bonds. The product was characterized by electron microscopy, and FTIR and Raman spectra and it was revealed that HCl, H2, and C/H fragments are lost and graphitic features are adopted upon heating to 700°C.

[1] Berry, M. J. (1974). Chloroethylene photochemical lasers: Vibrational energy content of the HCl molecular elimination products. The Journal of Chemical Physics, 61, 3114–3143. DOI: 10.1063/1.1682468. http://dx.doi.org/10.1063/1.168246810.1063/1.1682468Search in Google Scholar

[2] Bykovchenko, V. G., Érmanson, L. V., & Chernyshev, E. A. (1965). Investigation of the kinetice of the interaction of chlorosilanes with chlorobenzene in the gas phase. Russian Chemical Bulletin, 14, 1919–1922. DOI: 10.1007/BF00845882. http://dx.doi.org/10.1007/BF0084588210.1007/BF00845882Search in Google Scholar

[3] Chandra, M., Senapati, D., Tak, M., & Das, P. K. (2006). Photodissociation of isomeric dichloroethylenes in the ultraviolet: Effect of the second chlorine atom substitution on the dynamics. Chemical Physics Letters, 430, 32–35. DOI: 10.1016/j.cplett.2006.08.128. http://dx.doi.org/10.1016/j.cplett.2006.08.12810.1016/j.cplett.2006.08.128Search in Google Scholar

[4] Choi, M., Altman, I. S., Kim, Y.-J., Pikhitsa, P. V., Lee, S., Park, G.-S., Jeong, T., & Yoo, J.-B. (2004). Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Advanced Materials, 16, 1721–1725. DOI: 10.1002/adma.200400179. http://dx.doi.org/10.1002/adma.20040017910.1002/adma.200400179Search in Google Scholar

[5] Dillon, R. O., Woollam, J. A., & Katkanant, V. (1984). Use of Raman scattering to investigate disorder and crystalline formation in as-deposited and annealed carbon films. Physical Review B, 29, 3482–3489. DOI: 10.1103/PhysRevB.29.3482. http://dx.doi.org/10.1103/PhysRevB.29.348210.1103/PhysRevB.29.3482Search in Google Scholar

[6] Dischler, B., & Bayer, E. (1990). Properties of amorphous hydrogenated carbon films from ArF laser-induced C2H2 photolysis. Journal of Applied Physics, 68, 1237–1241. DOI: 10.1063/1.346724. http://dx.doi.org/10.1063/1.34672410.1063/1.346724Search in Google Scholar

[7] Ehbrecht, M., Faerber, M., Rohmund, F., Smirnov, V. V., Stellmakh, O., & Huisken, F. (1993). CO2-laser-driven production of carbon clusters and fullerenes from the gas phase. Chemical Physics Letters, 214, 34–38. DOI: 10.1016/0009-2614(93)85451-S. http://dx.doi.org/10.1016/0009-2614(93)85451-S10.1016/0009-2614(93)85451-SSearch in Google Scholar

[8] Galíková, A., & Pola, J. (2008). Highly sensitive TGA diagnosis of thermal behaviour of laser-deposited materials. Thermochimica Acta, 473, 54–60. DOI: 10.1016/j.tca.2008.04.014. http://dx.doi.org/10.1016/j.tca.2008.04.01410.1016/j.tca.2008.04.014Search in Google Scholar

[9] Galvez, A., Herlin-Boime, N., Reynaud, C., Clinard, C., & Rouzaud, J.-N. (2002). Carbon nanoparticles from laser pyrolysis. Carbon, 40, 2775–2789. DOI: 10.1016/S0008-6223(02)00195-1. http://dx.doi.org/10.1016/S0008-6223(02)00195-110.1016/S0008-6223(02)00195-1Search in Google Scholar

[10] He, G., Yang, Y., Huang, Y., Hashimoto, S., & Gordon, R. J. (1995). Ultraviolet elimination of H2 from chloroethylenes. The Journal of Chemical Physics, 103, 5488–5498. DOI: 10.1063/1.470533. http://dx.doi.org/10.1063/1.47053310.1063/1.470533Search in Google Scholar

[11] Hua, L., Zhang, X., Lee, W.-B., Chao, M.-H., Zhang, B., & Lin, K.-C. (2010). Photodissociation of cis-, trans-, and 1,1-dichloroethylene in the ultraviolet range: Characterization of Cl(2PJ) elimination. The Journal of Physical Chemistry A, 114, 37–44. DOI: 10.1021/jp907030e. http://dx.doi.org/10.1021/jp907030e10.1021/jp907030eSearch in Google Scholar

[12] Komuro, K., Ishizaki, K., & Suzuki, H. (2002). Cross-coupling reaction of chlorobenzene with triethoxysilane by palladium catalyst. Nippon Kagakkai Koen Yokoshu, 81, 1464. Search in Google Scholar

[13] Kitahama, K. (1988). Reinvestigation of the carbon films prepared by ArF excimer laser-induced chemical vapor deposition. Applied Physics Letters, 53, 1812–1814. DOI: 10.1063/1.99788. http://dx.doi.org/10.1063/1.9978810.1063/1.99788Search in Google Scholar

[14] Lindstam, M., Boman, M., & Piglmayer, K. (2001). Room temperature deposition of hydrogenated amorphous carbon films from laser-assisted photolytic chemical vapor deposition at 248 nm. Thin Solid Films, 394, 114–124. DOI: 10.1016/S0040-6090(01)01193-2. http://dx.doi.org/10.1016/S0040-6090(01)01193-210.1016/S0040-6090(01)01193-2Search in Google Scholar

[15] Mochida, I., Tsunawaki, T., Sotowa, C., Korai, Y., & Higuchi, K. (1996). Coke produced in the commercial pyrolysis of ethylene dichloride into vinyl chloride. Industrial & Engineering Chemistry Research, 35, 3803–3807. DOI: 10.1021/ie9600248. http://dx.doi.org/10.1021/ie960024810.1021/ie9600248Search in Google Scholar

[16] Morjan, I., Voicu, I., Dumitrache, F., Sandu, I., Soare, I., Alexandrescu, R., Vasile, E., Pasuk, I., Brydson, R. M. D., Daniels, H., & Rand, B. (2003). Carbon nanopowders from the continuous-wave CO2 laser-induced pyrolysis of ethylene. Carbon, 41, 2913–2921. DOI: 10.1016/S0008-6223(03)00381-6. http://dx.doi.org/10.1016/S0008-6223(03)00381-610.1016/S0008-6223(03)00381-6Search in Google Scholar

[17] Okamoto, M., Asano, T., & Suzuki, E. (2001). Phenyldichlorogermane synthesis by the reaction of chlorobenzene and the dichlorogermylene intermediate formed from elemental germanium and tetrachlorogermane. Organometallics, 20, 5583–5585. DOI: 10.1021/om010761q. http://dx.doi.org/10.1021/om010761q10.1021/om010761qSearch in Google Scholar

[18] Pola, J., Bakardjieva, S., Maryško, M., Vorlíček, V., Šubrt, J., Bastl, Z., Galíková, A., & Ouchi, A. (2007). Laser-induced conversion of silica into nanosized carbon-polyoxocarbosilane composites. The Journal of Physical Chemistry C, 111, 16818–16826. DOI: 10.1021/jp074243q. http://dx.doi.org/10.1021/jp074243q10.1021/jp074243qSearch in Google Scholar

[19] Pola, J., Galíková, A., Bastl, Z., Vorlíček, V., Šubrt, J., Bakardjieva, S., & Ouchi, A. (2008a). UV laser photolysis of 1,3-butadiyne and formation of a polyoxocarbosilane-doped nanosized carbon. Journal of Photochemistry and Photobiology A: Chemistry, 194, 200–205. DOI: 10.1016/j.jphotochem.2007.08.006. http://dx.doi.org/10.1016/j.jphotochem.2007.08.00610.1016/j.jphotochem.2007.08.006Search in Google Scholar

[20] Pola, J., Ouchi, A., Bakardjieva, S., Vorlíček, V., Maryško, M., Šubrt, J., & Bastl, Z. (2008b). Laser photochemical etching of silica: Nanodomains of crystalline chaoite and silica in amorphous C/Si/O/N phase. Journal of Physical Chemistry C, 112, 13281–13286. DOI: 10.1021/jp803738k. http://dx.doi.org/10.1021/jp803738k10.1021/jp803738kSearch in Google Scholar

[21] Pola, J., Ouchi, A., Saito, K., Ishikawa, K., & Koga, Y. (1996). Efficient chemical vapour deposition of hydrocarbon polymeric films by UV laser induced photolysis of 3-butyn-2-one. Chemical Physics Letters, 262, 279–283. DOI: 10.1016/0009-2614(96)01076-7. http://dx.doi.org/10.1016/0009-2614(96)01076-710.1016/0009-2614(96)01076-7Search in Google Scholar

[22] Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., & Silva, S. R. P. (1996). Raman spectroscopy of amorphous carbon films. Journal of Applied Physics, 80, 440–447. DOI: 10.1063/1.362745. http://dx.doi.org/10.1063/1.36274510.1063/1.362745Search in Google Scholar

[23] Stenberg, G., Piglmayer, K., Boman, M., & Carlsson, J.-O. (1997). Laser assisted chemical vapour deposition of hydrogen containing amorphous carbon at room temperature. Applied Surface Science, 109–110, 549–553. DOI: 10.1016/S0169-4332(96)00911-7. http://dx.doi.org/10.1016/S0169-4332(96)00911-710.1016/S0169-4332(96)00911-7Search in Google Scholar

[24] Umemoto, M., Seki, K., Shinohara, H., Nagashima, U., Nishi, N., Kinoshita, M., & Shimada, R. (1985). Photofragmentation of mono- and dichloroethylenes: Translational energy measurements of recoiling Cl and HCl fragments. The Journal of Chemical Physics, 83, 1657–1666. DOI: 10.1063/1.449403. http://dx.doi.org/10.1063/1.44940310.1063/1.449403Search in Google Scholar

[25] Wu, Y.-P. G., & Won, Y.-S. (2003). Thermal decomposition of 1,1-dichloroethene diluted in hydrogen. Journal of Hazardous Materials, 105, 63–81. DOI: 10.1016/j.jhazmat.2003.06.001. http://dx.doi.org/10.1016/j.jhazmat.2003.06.00110.1016/j.jhazmat.2003.06.001Search in Google Scholar PubMed

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
  2. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
  3. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
  4. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
  5. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
  6. GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
  7. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
  8. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
  9. Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
  10. Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
  11. Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
  12. ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
  13. Asymmetric synthesis of machilin C and its analogue
  14. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
  15. Single crystal X-ray structure and optical properties of anthraquinone-based dyes
  16. Low-density polyethylene in mixtures of hexane and benzene derivates
  17. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
  18. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
  19. Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
  20. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0048-0/html
Scroll to top button