Home Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
Article
Licensed
Unlicensed Requires Authentication

Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection

  • Fitria Rahmawati EMAIL logo , Triana Kusumaningsih , Anita Hapsari and Aris Hastuti
Published/Copyright: August 14, 2010
Become an author with De Gruyter Brill

Abstract

TiO2 film was synthesized by means of the chemical bath deposition (CBD) method from TiCl4 as a precursor and surfactant cetyl trimethyl ammonium bromide (CTAB) as a linking and assembling agent of the titanium hydroxide network on a graphite substrate. Ag and Cu were loaded on the TiO2 film by means of electrodeposition at various applied currents. Photoelectrochemical testing on the composite of Ag-TiO2/G and Cu-TiO2/G was used to define the composite for Escherichia coli-contaminated water disinfection. Disinfection efficiency and the rate of disinfection of E. coli-contaminated water with Ag-TiO2/G as a catalyst was higher than that observed for Cu-TiO2/G in all disinfection methods including photocatalysis (PC), electrocatalysis (EC), and photoelectrocatalysis (PEC). The highest rate constant was achieved by the PEC method using Ag-TiO2/G, k was 6.49 × 10−2 CFU mL−1 min−1. Effective disinfection times of 24 h (EDT24) and 48 h (EDT48) were achieved in all methods except the EC method using Cu-TiO2/G.

[1] Akurati, K. K., Vital, A., Fortunato, G., Hany, R., Nueesch, F., & Graule, T. (2007). Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Science, 9, 247–257. DOI: 10.1016/j.solidstatesciences.2006.12.004. http://dx.doi.org/10.1016/j.solidstatesciences.2006.12.00410.1016/j.solidstatesciences.2006.12.004Search in Google Scholar

[2] Barner, H. D., & Cohen, S. S. (1956). The relation of growth to the lethal damage induced by ultraviolet irradiation in Escherichia coli. Journal of Bacteriology, 71, 149–157. 10.1128/jb.71.2.149-157.1956Search in Google Scholar

[3] Blake, D. M., Maness, P.-C., Huang, Z., Wolfrum, E. J., Huang, J., & Jacoby, W. A. (1999). Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation & Purification Reviews, 28, 1–50. DOI: 10.1080/03602549909351643. http://dx.doi.org/10.1080/0360254990935164310.1080/03602549909351643Search in Google Scholar

[4] Butterfield, I. M., Christensen, P. A., Curtis, T. P., & Gunlazuardi, J. (1997). Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement. Water Research, 31, 675–677. DOI: 10.1016/S0043-1354(96)00391-0. http://dx.doi.org/10.1016/S0043-1354(96)00391-010.1016/S0043-1354(96)00391-0Search in Google Scholar

[5] Cho, M., Lee, Y., Chung, H., & Yoon, J. (2004). Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. Applied and Environmental Microbiology, 70, 1129–1133. DOI: 10.1128/AEM.70.2.1129-1134. http://dx.doi.org/10.1128/AEM.70.2.1129-1134.2004Search in Google Scholar

[6] Christensen, P. A., Curtis, T. P., Egerton, T. A., Kosa, S. A. M., & Tinlin, J. R. (2003). Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Applied Catalysis B: Environmental, 41, 371–386. DOI: 10.1016/S0926-3373(02)00172-8. http://dx.doi.org/10.1016/S0926-3373(02)00172-810.1016/S0926-3373(02)00172-8Search in Google Scholar

[7] Chu, D., Yuan, X., Qin, G., Xu, M., Zheng, P., Lu, J., & Zha, L. (2008). Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. Journal of Nanoparticle Research, 10, 357–363. DOI: 10.1007/s11051-007-9241-7. http://dx.doi.org/10.1007/s11051-007-9241-710.1007/s11051-007-9241-7Search in Google Scholar

[8] Doubleday, O. P., Green, M. H. L., & Bridges, B. A. (1977). Spontaneous and ultraviolet-induced mutation in Escherichia coli: Interaction between plasmid and tif-I mutator effects. Journal of General Microbiology, 1977, 163–166. 10.1099/00221287-101-1-163Search in Google Scholar

[9] Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal of Photochemistry and Photobiology A: Chemistry, 148, 355–363. DOI: 10.1016/S1010-6030(02)00063-1. http://dx.doi.org/10.1016/S1010-6030(02)00063-110.1016/S1010-6030(02)00063-1Search in Google Scholar

[10] Egerton, T. A., Kosa, S. A. M., & Christensen, P. A. (2006). Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Physical Chemistry Chemical Physics, 8, 398–406. DOI. 10.1039/b507516e http://dx.doi.org/10.1039/b507516e10.1039/B507516ESearch in Google Scholar

[11] Friedberg, E. C. (2003). DNA damage and repair. Nature, 421, 436–440. DOI: 10.1038/nature01408. http://dx.doi.org/10.1038/nature0140810.1038/nature01408Search in Google Scholar PubMed

[12] Hammer, N., Kvande, I., Xu, X., Gunnarsson, V., Tøtdal, B., Chen, D., & Rønning, M. (2007). Au-TiO2 catalysts on carbon nanofibres prepared by deposition-precipitation and from colloid solutions. Catalysis Today, 123, 245–256. DOI: 10.1016/j.cattod.2007.03.001. http://dx.doi.org/10.1016/j.cattod.2007.03.00110.1016/j.cattod.2007.03.001Search in Google Scholar

[13] Harm, W. (1980). Biological effects of ultraviolet radiation (pp. 31–39). New York, NY, USA: Cambridge University Press. Search in Google Scholar

[14] Harper, J. C., Christensen, P. A., Egerton, T. A., Curtis, T. P., & Gunlazuardi, J. (2001). Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated with E. coli. Journal of Applied Electrochemistry, 31, 623–628. DOI: 10.1023/A:1017539328022. http://dx.doi.org/10.1023/A:101753932802210.1023/A:1017539328022Search in Google Scholar

[15] He, C., Xiong, Y., Zha, C., Wang, X., & Zhu, X. (2003). Approach to a pulse photoelectrocatalytic process for the degradation of organic pollutants. Journal of Chemical Technology and Biotechnology, 78, 717–723. DOI:10.1002/jctb.851. http://dx.doi.org/10.1002/jctb.85110.1002/jctb.851Search in Google Scholar

[16] Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental application of semiconductor photocatalysis. Chemical Reviews, 95, 69–96. DOI: 10.1021/cr00033a004. http://dx.doi.org/10.1021/cr00033a00410.1021/cr00033a004Search in Google Scholar

[17] Kabir, M. F., Haque, F., Vaisman, E., Langford, C. H., & Kantzas, A. (2003). Disinfecting E. coli bacteria in drinking water using a novel fluidized bed reactor. International Journal of Chemical Reactor Engineering, 1, 1–10. http://dx.doi.org/10.2202/1542-6580.110110.2202/1542-6580.1101Search in Google Scholar

[18] Kantor, G. J., & Deering, R. A. (1966). Ultraviolet radiation studies of filamentous Escherichia coli B. Journal of Bacteriology, 92, 1062–1070. 10.1128/jb.92.4.1062-1069.1966Search in Google Scholar

[19] Kappke, J., da Silva, E. R., Schelin, H. R., Paschuk, S. A., Pashchuk, A., de Oliveira, A., Filho, N. C., Szanto, E. M., Takahashi, J., & Calvacante de Souza, J. (2005). Evaluation of Escherichia coli cells damages induced by ultraviolet and proton beam radiation. Brazilian Journal of Physics, 35, 805–807. DOI: 10.1590/S0103-97332005000500022. http://dx.doi.org/10.1590/S0103-9733200500050002210.1590/S0103-97332005000500022Search in Google Scholar

[20] Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry, 106, 51–56. DOI: 10.1016/S1010-6030(97)00038-5. http://dx.doi.org/10.1016/S1010-6030(97)00038-510.1016/S1010-6030(97)00038-5Search in Google Scholar

[21] Körösi, L., Papp, S., Bertóti, I., & Dékány, I. (2007). Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials, 19, 4811–4819. DOI: 10.1021/cm070692r. http://dx.doi.org/10.1021/cm070692r10.1021/cm070692rSearch in Google Scholar

[22] Kripke, M. L., Cox, P. A., Alas, L. G., & Yarosh, D. B. (1992). Pyrimidine dimmers in DNA initiate systemic suppression in UV-irradiated mice. Proceedings of the National Academy of Sciences of the USA, 89, 7516–7520. http://dx.doi.org/10.1073/pnas.89.16.751610.1073/pnas.89.16.7516Search in Google Scholar PubMed PubMed Central

[23] Li, Y., Ma, M., Wang, X., & Wang, X. (2008). Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study. Journal of Environmental Science, 20, 1527–1533. DOI: 10.1016/S1001-0742(08)62561-9. http://dx.doi.org/10.1016/S1001-0742(08)62561-910.1016/S1001-0742(08)62561-9Search in Google Scholar

[24] Maness, P.-C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., & Jacoby, W. A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 65, 4094–4098. 10.1128/AEM.65.9.4094-4098.1999Search in Google Scholar

[25] Marugán, J., van Grieken, R., Sordo, C., & Cruz, C. (2008). Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental, 82, 27–36. DOI: 10.1016/j.apcatb.2008.01.002. http://dx.doi.org/10.1016/j.apcatb.2008.01.00210.1016/j.apcatb.2008.01.002Search in Google Scholar

[26] Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35. DOI: 10.1016/S1010-6030(97)00118-4. http://dx.doi.org/10.1016/S1010-6030(97)00118-410.1016/S1010-6030(97)00118-4Search in Google Scholar

[27] Oguma, K., Katayama, H., & Ohgaki, S. (2002). Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Applied and Environmental Microbiology, 68, 6029–6035. DOI: 10.1128/AEM.68.12.6029-6035.2002. http://dx.doi.org/10.1128/AEM.68.12.6029-6035.200210.1128/AEM.68.12.6029-6035.2002Search in Google Scholar

[28] Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S., & Matsumura, M. (1998). Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using iron(III) ions as electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 118, 41–44. DOI: 10.1016/S1010-6030(98)00374-8. http://dx.doi.org/10.1016/S1010-6030(98)00374-810.1016/S1010-6030(98)00374-8Search in Google Scholar

[29] Peak, M. J., & Peak, J. G. (1982). Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: Action spectrum and properties. Photochemistry and Photobiology, 35, 675–680. DOI: 10.1111/j.1751-1097.1982.tb02628.x. http://dx.doi.org/10.1111/j.1751-1097.1982.tb02628.x10.1111/j.1751-1097.1982.tb02628.xSearch in Google Scholar PubMed

[30] Peak, M. J., Peak, J. G., Moehring, M. P., & Webs, R. B. (1984). Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region. Photochemistry and Photobiology, 40, 613–620. DOI: 10.1111/j.1751-1097.1984.tb05349.x. http://dx.doi.org/10.1111/j.1751-1097.1984.tb05349.x10.1111/j.1751-1097.1984.tb05349.xSearch in Google Scholar PubMed

[31] Rahmawati, F., Wahyuningsih, S., & Handayani, N. (2008). Surface modification of semiconductor thin film of TiO2 on graphite substrate by Cu electrodeposition. Indonesian Journal of Chemistry, 8, 331–336. 10.22146/ijc.21587Search in Google Scholar

[32] Rahmawati, F., Wahyuningsih, S., & Windu, P. A. (2006). Synthesis of thin film of TiO2 on graphite substrate by chemical bath deposition. Indonesian Journal of Chemistry, 6, 121–126. 10.22146/ijc.21746Search in Google Scholar

[33] Rincón, A. G., Pulgarin, C., Adler, N., & Peringer, P. (2001). Interaction between E. coli inactivation and DBP-precursors—dihydroxybenzene isomers—in the photocatalytic process of drinking-water disinfection with TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 139, 233–241. DOI: 10.1016/S1010-6030(01)00374-4. http://dx.doi.org/10.1016/S1010-6030(01)00374-410.1016/S1010-6030(01)00374-4Search in Google Scholar

[34] Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1, 225–236. DOI: 10.1039/b201230h. http://dx.doi.org/10.1039/b201230h10.1039/b201230hSearch in Google Scholar PubMed

[35] Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., & Herrlich, P. (1989). UV-induced DNA damage is an intermediate step in a UV-induced expression of human immunodeficiency virus type I, collagenase, c-fos, and metallothionein. Molecular and Cellular Biology, 9, 5169–5181. Search in Google Scholar

[36] Sunada, K., Kikuchi, Y., Hashimoto, K., & Fujishima, A. (1998). Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 32, 726–728. DOI: 10.1021/es970860o. http://dx.doi.org/10.1021/es970860o10.1021/es970860oSearch in Google Scholar

[37] Wei, C., Lin, W. Y., Zainal, Z., Williams, N. E., Zhu, K., Kruzic, A. P., Smith, R. L., & Rajeshwar, K. (1994). Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environmental Science & Technology, 28, 934–938. DOI: 10.1021/es00054a027. http://dx.doi.org/10.1021/es00054a02710.1021/es00054a027Search in Google Scholar PubMed

[38] Xu, J., Ao, Y., Fu, D., Lin, J., Lin, Y., Shen, X., Yuan, C., & Yin, Z. (2008). Photocatalytic activity on TiO2-coated sideglowing optical fiber reactor under solar light. Journal of Photochemistry and Photobiology A: Chemistry, 199, 165–169. DOI: 10.1016/j.jphotochem.2008.05.019. http://dx.doi.org/10.1016/j.jphotochem.2008.05.01910.1016/j.jphotochem.2008.05.019Search in Google Scholar

[39] Yoon, K.-Y., Byeon, J. H., Park, J.-H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373, 572–575. DOI: 10.1016/j.scitotenv.2006.11.007. http://dx.doi.org/10.1016/j.scitotenv.2006.11.00710.1016/j.scitotenv.2006.11.007Search in Google Scholar PubMed

[40] Zelle, M. R., & Hollaender, A. (1954). Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. Journal of Bacteriology, 68, 210–215. 10.1128/jb.68.2.210-215.1954Search in Google Scholar PubMed PubMed Central

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
  2. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
  3. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
  4. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
  5. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
  6. GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
  7. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
  8. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
  9. Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
  10. Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
  11. Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
  12. ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
  13. Asymmetric synthesis of machilin C and its analogue
  14. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
  15. Single crystal X-ray structure and optical properties of anthraquinone-based dyes
  16. Low-density polyethylene in mixtures of hexane and benzene derivates
  17. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
  18. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
  19. Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
  20. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0036-4/html
Scroll to top button