Abstract
TiO2 film was synthesized by means of the chemical bath deposition (CBD) method from TiCl4 as a precursor and surfactant cetyl trimethyl ammonium bromide (CTAB) as a linking and assembling agent of the titanium hydroxide network on a graphite substrate. Ag and Cu were loaded on the TiO2 film by means of electrodeposition at various applied currents. Photoelectrochemical testing on the composite of Ag-TiO2/G and Cu-TiO2/G was used to define the composite for Escherichia coli-contaminated water disinfection. Disinfection efficiency and the rate of disinfection of E. coli-contaminated water with Ag-TiO2/G as a catalyst was higher than that observed for Cu-TiO2/G in all disinfection methods including photocatalysis (PC), electrocatalysis (EC), and photoelectrocatalysis (PEC). The highest rate constant was achieved by the PEC method using Ag-TiO2/G, k was 6.49 × 10−2 CFU mL−1 min−1. Effective disinfection times of 24 h (EDT24) and 48 h (EDT48) were achieved in all methods except the EC method using Cu-TiO2/G.
[1] Akurati, K. K., Vital, A., Fortunato, G., Hany, R., Nueesch, F., & Graule, T. (2007). Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Science, 9, 247–257. DOI: 10.1016/j.solidstatesciences.2006.12.004. http://dx.doi.org/10.1016/j.solidstatesciences.2006.12.00410.1016/j.solidstatesciences.2006.12.004Search in Google Scholar
[2] Barner, H. D., & Cohen, S. S. (1956). The relation of growth to the lethal damage induced by ultraviolet irradiation in Escherichia coli. Journal of Bacteriology, 71, 149–157. 10.1128/jb.71.2.149-157.1956Search in Google Scholar
[3] Blake, D. M., Maness, P.-C., Huang, Z., Wolfrum, E. J., Huang, J., & Jacoby, W. A. (1999). Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Separation & Purification Reviews, 28, 1–50. DOI: 10.1080/03602549909351643. http://dx.doi.org/10.1080/0360254990935164310.1080/03602549909351643Search in Google Scholar
[4] Butterfield, I. M., Christensen, P. A., Curtis, T. P., & Gunlazuardi, J. (1997). Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement. Water Research, 31, 675–677. DOI: 10.1016/S0043-1354(96)00391-0. http://dx.doi.org/10.1016/S0043-1354(96)00391-010.1016/S0043-1354(96)00391-0Search in Google Scholar
[5] Cho, M., Lee, Y., Chung, H., & Yoon, J. (2004). Inactivation of Escherichia coli by photochemical reaction of ferrioxalate at slightly acidic and near-neutral pHs. Applied and Environmental Microbiology, 70, 1129–1133. DOI: 10.1128/AEM.70.2.1129-1134. http://dx.doi.org/10.1128/AEM.70.2.1129-1134.2004Search in Google Scholar
[6] Christensen, P. A., Curtis, T. P., Egerton, T. A., Kosa, S. A. M., & Tinlin, J. R. (2003). Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Applied Catalysis B: Environmental, 41, 371–386. DOI: 10.1016/S0926-3373(02)00172-8. http://dx.doi.org/10.1016/S0926-3373(02)00172-810.1016/S0926-3373(02)00172-8Search in Google Scholar
[7] Chu, D., Yuan, X., Qin, G., Xu, M., Zheng, P., Lu, J., & Zha, L. (2008). Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. Journal of Nanoparticle Research, 10, 357–363. DOI: 10.1007/s11051-007-9241-7. http://dx.doi.org/10.1007/s11051-007-9241-710.1007/s11051-007-9241-7Search in Google Scholar
[8] Doubleday, O. P., Green, M. H. L., & Bridges, B. A. (1977). Spontaneous and ultraviolet-induced mutation in Escherichia coli: Interaction between plasmid and tif-I mutator effects. Journal of General Microbiology, 1977, 163–166. 10.1099/00221287-101-1-163Search in Google Scholar
[9] Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal of Photochemistry and Photobiology A: Chemistry, 148, 355–363. DOI: 10.1016/S1010-6030(02)00063-1. http://dx.doi.org/10.1016/S1010-6030(02)00063-110.1016/S1010-6030(02)00063-1Search in Google Scholar
[10] Egerton, T. A., Kosa, S. A. M., & Christensen, P. A. (2006). Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2. Physical Chemistry Chemical Physics, 8, 398–406. DOI. 10.1039/b507516e http://dx.doi.org/10.1039/b507516e10.1039/B507516ESearch in Google Scholar
[11] Friedberg, E. C. (2003). DNA damage and repair. Nature, 421, 436–440. DOI: 10.1038/nature01408. http://dx.doi.org/10.1038/nature0140810.1038/nature01408Search in Google Scholar PubMed
[12] Hammer, N., Kvande, I., Xu, X., Gunnarsson, V., Tøtdal, B., Chen, D., & Rønning, M. (2007). Au-TiO2 catalysts on carbon nanofibres prepared by deposition-precipitation and from colloid solutions. Catalysis Today, 123, 245–256. DOI: 10.1016/j.cattod.2007.03.001. http://dx.doi.org/10.1016/j.cattod.2007.03.00110.1016/j.cattod.2007.03.001Search in Google Scholar
[13] Harm, W. (1980). Biological effects of ultraviolet radiation (pp. 31–39). New York, NY, USA: Cambridge University Press. Search in Google Scholar
[14] Harper, J. C., Christensen, P. A., Egerton, T. A., Curtis, T. P., & Gunlazuardi, J. (2001). Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated with E. coli. Journal of Applied Electrochemistry, 31, 623–628. DOI: 10.1023/A:1017539328022. http://dx.doi.org/10.1023/A:101753932802210.1023/A:1017539328022Search in Google Scholar
[15] He, C., Xiong, Y., Zha, C., Wang, X., & Zhu, X. (2003). Approach to a pulse photoelectrocatalytic process for the degradation of organic pollutants. Journal of Chemical Technology and Biotechnology, 78, 717–723. DOI:10.1002/jctb.851. http://dx.doi.org/10.1002/jctb.85110.1002/jctb.851Search in Google Scholar
[16] Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental application of semiconductor photocatalysis. Chemical Reviews, 95, 69–96. DOI: 10.1021/cr00033a004. http://dx.doi.org/10.1021/cr00033a00410.1021/cr00033a004Search in Google Scholar
[17] Kabir, M. F., Haque, F., Vaisman, E., Langford, C. H., & Kantzas, A. (2003). Disinfecting E. coli bacteria in drinking water using a novel fluidized bed reactor. International Journal of Chemical Reactor Engineering, 1, 1–10. http://dx.doi.org/10.2202/1542-6580.110110.2202/1542-6580.1101Search in Google Scholar
[18] Kantor, G. J., & Deering, R. A. (1966). Ultraviolet radiation studies of filamentous Escherichia coli B. Journal of Bacteriology, 92, 1062–1070. 10.1128/jb.92.4.1062-1069.1966Search in Google Scholar
[19] Kappke, J., da Silva, E. R., Schelin, H. R., Paschuk, S. A., Pashchuk, A., de Oliveira, A., Filho, N. C., Szanto, E. M., Takahashi, J., & Calvacante de Souza, J. (2005). Evaluation of Escherichia coli cells damages induced by ultraviolet and proton beam radiation. Brazilian Journal of Physics, 35, 805–807. DOI: 10.1590/S0103-97332005000500022. http://dx.doi.org/10.1590/S0103-9733200500050002210.1590/S0103-97332005000500022Search in Google Scholar
[20] Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry, 106, 51–56. DOI: 10.1016/S1010-6030(97)00038-5. http://dx.doi.org/10.1016/S1010-6030(97)00038-510.1016/S1010-6030(97)00038-5Search in Google Scholar
[21] Körösi, L., Papp, S., Bertóti, I., & Dékány, I. (2007). Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials, 19, 4811–4819. DOI: 10.1021/cm070692r. http://dx.doi.org/10.1021/cm070692r10.1021/cm070692rSearch in Google Scholar
[22] Kripke, M. L., Cox, P. A., Alas, L. G., & Yarosh, D. B. (1992). Pyrimidine dimmers in DNA initiate systemic suppression in UV-irradiated mice. Proceedings of the National Academy of Sciences of the USA, 89, 7516–7520. http://dx.doi.org/10.1073/pnas.89.16.751610.1073/pnas.89.16.7516Search in Google Scholar PubMed PubMed Central
[23] Li, Y., Ma, M., Wang, X., & Wang, X. (2008). Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study. Journal of Environmental Science, 20, 1527–1533. DOI: 10.1016/S1001-0742(08)62561-9. http://dx.doi.org/10.1016/S1001-0742(08)62561-910.1016/S1001-0742(08)62561-9Search in Google Scholar
[24] Maness, P.-C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., & Jacoby, W. A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 65, 4094–4098. 10.1128/AEM.65.9.4094-4098.1999Search in Google Scholar
[25] Marugán, J., van Grieken, R., Sordo, C., & Cruz, C. (2008). Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental, 82, 27–36. DOI: 10.1016/j.apcatb.2008.01.002. http://dx.doi.org/10.1016/j.apcatb.2008.01.00210.1016/j.apcatb.2008.01.002Search in Google Scholar
[26] Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35. DOI: 10.1016/S1010-6030(97)00118-4. http://dx.doi.org/10.1016/S1010-6030(97)00118-410.1016/S1010-6030(97)00118-4Search in Google Scholar
[27] Oguma, K., Katayama, H., & Ohgaki, S. (2002). Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Applied and Environmental Microbiology, 68, 6029–6035. DOI: 10.1128/AEM.68.12.6029-6035.2002. http://dx.doi.org/10.1128/AEM.68.12.6029-6035.200210.1128/AEM.68.12.6029-6035.2002Search in Google Scholar
[28] Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S., & Matsumura, M. (1998). Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using iron(III) ions as electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 118, 41–44. DOI: 10.1016/S1010-6030(98)00374-8. http://dx.doi.org/10.1016/S1010-6030(98)00374-810.1016/S1010-6030(98)00374-8Search in Google Scholar
[29] Peak, M. J., & Peak, J. G. (1982). Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: Action spectrum and properties. Photochemistry and Photobiology, 35, 675–680. DOI: 10.1111/j.1751-1097.1982.tb02628.x. http://dx.doi.org/10.1111/j.1751-1097.1982.tb02628.x10.1111/j.1751-1097.1982.tb02628.xSearch in Google Scholar PubMed
[30] Peak, M. J., Peak, J. G., Moehring, M. P., & Webs, R. B. (1984). Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UVB region. Photochemistry and Photobiology, 40, 613–620. DOI: 10.1111/j.1751-1097.1984.tb05349.x. http://dx.doi.org/10.1111/j.1751-1097.1984.tb05349.x10.1111/j.1751-1097.1984.tb05349.xSearch in Google Scholar PubMed
[31] Rahmawati, F., Wahyuningsih, S., & Handayani, N. (2008). Surface modification of semiconductor thin film of TiO2 on graphite substrate by Cu electrodeposition. Indonesian Journal of Chemistry, 8, 331–336. 10.22146/ijc.21587Search in Google Scholar
[32] Rahmawati, F., Wahyuningsih, S., & Windu, P. A. (2006). Synthesis of thin film of TiO2 on graphite substrate by chemical bath deposition. Indonesian Journal of Chemistry, 6, 121–126. 10.22146/ijc.21746Search in Google Scholar
[33] Rincón, A. G., Pulgarin, C., Adler, N., & Peringer, P. (2001). Interaction between E. coli inactivation and DBP-precursors—dihydroxybenzene isomers—in the photocatalytic process of drinking-water disinfection with TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 139, 233–241. DOI: 10.1016/S1010-6030(01)00374-4. http://dx.doi.org/10.1016/S1010-6030(01)00374-410.1016/S1010-6030(01)00374-4Search in Google Scholar
[34] Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1, 225–236. DOI: 10.1039/b201230h. http://dx.doi.org/10.1039/b201230h10.1039/b201230hSearch in Google Scholar PubMed
[35] Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., & Herrlich, P. (1989). UV-induced DNA damage is an intermediate step in a UV-induced expression of human immunodeficiency virus type I, collagenase, c-fos, and metallothionein. Molecular and Cellular Biology, 9, 5169–5181. Search in Google Scholar
[36] Sunada, K., Kikuchi, Y., Hashimoto, K., & Fujishima, A. (1998). Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 32, 726–728. DOI: 10.1021/es970860o. http://dx.doi.org/10.1021/es970860o10.1021/es970860oSearch in Google Scholar
[37] Wei, C., Lin, W. Y., Zainal, Z., Williams, N. E., Zhu, K., Kruzic, A. P., Smith, R. L., & Rajeshwar, K. (1994). Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system. Environmental Science & Technology, 28, 934–938. DOI: 10.1021/es00054a027. http://dx.doi.org/10.1021/es00054a02710.1021/es00054a027Search in Google Scholar PubMed
[38] Xu, J., Ao, Y., Fu, D., Lin, J., Lin, Y., Shen, X., Yuan, C., & Yin, Z. (2008). Photocatalytic activity on TiO2-coated sideglowing optical fiber reactor under solar light. Journal of Photochemistry and Photobiology A: Chemistry, 199, 165–169. DOI: 10.1016/j.jphotochem.2008.05.019. http://dx.doi.org/10.1016/j.jphotochem.2008.05.01910.1016/j.jphotochem.2008.05.019Search in Google Scholar
[39] Yoon, K.-Y., Byeon, J. H., Park, J.-H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 373, 572–575. DOI: 10.1016/j.scitotenv.2006.11.007. http://dx.doi.org/10.1016/j.scitotenv.2006.11.00710.1016/j.scitotenv.2006.11.007Search in Google Scholar PubMed
[40] Zelle, M. R., & Hollaender, A. (1954). Monochromatic ultraviolet action spectra and quantum yields for inactivation of T1 and T2 Escherichia coli bacteriophages. Journal of Bacteriology, 68, 210–215. 10.1128/jb.68.2.210-215.1954Search in Google Scholar PubMed PubMed Central
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
- Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
- Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
- Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
- Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
- GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
- Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
- Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
- Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
- Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
- Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
- ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
- Asymmetric synthesis of machilin C and its analogue
- Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
- Single crystal X-ray structure and optical properties of anthraquinone-based dyes
- Low-density polyethylene in mixtures of hexane and benzene derivates
- Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
- Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
- Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
- ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Articles in the same Issue
- A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
- Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
- Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
- Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
- Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
- GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
- Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
- Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
- Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
- Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
- Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
- ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
- Asymmetric synthesis of machilin C and its analogue
- Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
- Single crystal X-ray structure and optical properties of anthraquinone-based dyes
- Low-density polyethylene in mixtures of hexane and benzene derivates
- Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
- Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
- Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
- ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate