Home Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
Article
Licensed
Unlicensed Requires Authentication

Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents

  • Guo-Quan Zhu EMAIL logo , Fa-Gang Wang , Yu-Ying Liu and Qiao-Chun Gao
Published/Copyright: August 14, 2010
Become an author with De Gruyter Brill

Abstract

Poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) (PBLG-graft-PEG) copolymer was synthesized by the ester exchange reaction of PBLG homopolymer with mPEG. Aggregation behavior of the PBLG-graft-PEG copolymer in mixtures of ethanol and chloroform was investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS), and viscometry. Effects of the polymer solution concentration, grafting degree, test temperature, and chloroform content on the morphology, average particle diameter, and critical micelle concentration (CMC) of the micelles formed by the PBLG-graft-PEG copolymer in the mixed solvents were mainly studied. It was revealed that the PBLG-graft-PEG copolymer can self-assemble into polymeric micelles with a core-shell structure in various shapes depending on the preparation conditions.

[1] Abe, A., & Yamazaki, T. (1989). Deuterium NMR analysis of poly(γ-benzyl l-glutamate) in the lyotropic liquid-crystalline state: orientational order of the α-helical backbone and conformation of the pendant side chain. Macromolecules, 22, 2138–2145. DOI: 10.1021/ma00195a023. http://dx.doi.org/10.1021/ma00195a02310.1021/ma00195a023Search in Google Scholar

[2] Cai, C., Lin, J., Chen, T., & Tian, X. (2010). Aggregation behavior of graft copolymer with rigid backbone. Langmuir, 26, 2791–2797. DOI: 10.1021/1a902834m. http://dx.doi.org/10.1021/la902834mSearch in Google Scholar

[3] Carlsen, A., & Lecommandoux, S. (2009). Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science, 14, 329–339. DOI: 10.1016/j.cocis.2009.04.007. http://dx.doi.org/10.1016/j.cocis.2009.04.00710.1016/j.cocis.2009.04.007Search in Google Scholar

[4] Chécot, F., Lecommandoux, S., Gnanou, Y., & Klok, H.-A. (2002). Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angewandte Chemie International Edition, 41, 1339–1343. DOI: 10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N. http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-N10.1002/1521-3773(20020415)41:8<1339::AID-ANIE1339>3.0.CO;2-NSearch in Google Scholar

[5] Cheon, J.-B., Jeong, Y.-I., & Cho, C.-S. (1999). Effects of temperature on diblock copolymer micelle composed of poly(γ-benzyl l-glutamate) and poly(N-isopropylacrylamide). Polymer, 40, 2041–2050. DOI: 10.1016/S0032-3861(98)00432-7. http://dx.doi.org/10.1016/S0032-3861(98)00432-710.1016/S0032-3861(98)00432-7Search in Google Scholar

[6] Cho, C.-S., Cheon, J.-B., Jeong, Y.-I., Kim, I.-S., Kim, S.-H., & Akaike, T. (1997). Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(N-isopropylacrylamide) as the shell. Macromolecular Rapid Communications, 18, 361–369. DOI: 10.1002/marc.1997.030180502. http://dx.doi.org/10.1002/marc.1997.03018050210.1002/marc.1997.030180502Search in Google Scholar

[7] Cho, C.-S., Nah, J.-W., Jeong, Y.-I., Cheon, J.-B., Asayama, S., Ise, H., & Akaike, T. (1999). Conformational transition of nanoparticles composed of poly(γ-benzyl l-glutamate) as the core and poly(ethylene oxide) as the shell. Polymer, 40, 6769–6775. DOI: 10.1016/S0032-3861(99)00007-5. http://dx.doi.org/10.1016/S0032-3861(99)00007-510.1016/S0032-3861(99)00007-5Search in Google Scholar

[8] Gao, Z., Desjardins, A., & Eisenberg, A. (1992). Solubilization equilibria of water in nonaqueous solutions of block ionomer reverse micelles: an NMR study. Macromolecules, 25, 1300–1303. DOI: 10.1021/ma00030a015. http://dx.doi.org/10.1021/ma00030a01510.1021/ma00030a015Search in Google Scholar

[9] Harada, A., Cammas, S., & Kataoka, K. (1996). Stabilized α-helix structure of poly(l-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules, 29, 6183–6188. DOI: 10.1021/ma960487p. http://dx.doi.org/10.1021/ma960487p10.1021/ma960487pSearch in Google Scholar

[10] He, Y. Y., Li, Z. B., Simone, P., & Lodge, T. P. (2006). Self-assembly of block copolymer micelles in an ionic liquid. Journal of the American Chemical Society, 128, 2745–2750. DOI: 10.1021/ja058091t. http://dx.doi.org/10.1021/ja058091t10.1021/ja058091tSearch in Google Scholar

[11] Iatrou, H., Frielinghaus, H., Hanski, S., Ferderigos, N., Ruokolainen, J., Ikkala, O., Richter, D., Mays, J., & Hadjichristidis, N. (2007). Architecturally induced multiresponsive vesicles from well-defined polypeptides. Formation of gene vehicles. Biomacromolecules, 8, 2173–2181. DOI: 10.1021/bm070360f. http://dx.doi.org/10.1021/bm070360f10.1021/bm070360fSearch in Google Scholar

[12] Jeong, Y.-I., Nah, J.-W., Lee, H.-C., Kim, S.-H., & Cho, C.-S. (1999). Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. International Journal of Pharmaceutics, 188, 49–58. DOI: 10.1016/S0378-5173(99)00202-1. http://dx.doi.org/10.1016/S0378-5173(99)00202-110.1016/S0378-5173(99)00202-1Search in Google Scholar

[13] Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1993). Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl l-aspartate). Langmuir, 9, 945–949. DOI: 10.1021/la00028a012. http://dx.doi.org/10.1021/la00028a01210.1021/la00028a012Search in Google Scholar

[14] Li, T., Lin, J., Chen, T., & Zhang, S. (2006). Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer, 47, 4485–4489. DOI: 10.1016/j.polymer.2006.04.011. http://dx.doi.org/10.1016/j.polymer.2006.04.01110.1016/j.polymer.2006.04.011Search in Google Scholar

[15] Lin, J., Zhang, S., Chen, T., Lin, S., & Jin, H. (2007). Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. International Journal of Pharmaceutics, 336, 49–57. DOI: 10.1016/j.ijpharm.2006.11.026. http://dx.doi.org/10.1016/j.ijpharm.2006.11.02610.1016/j.ijpharm.2006.11.026Search in Google Scholar

[16] Lin, J., Zhu, J., Chen, T., Lin, S., Cai, C., Zhang, L., Zhuang, Y., & Wang, X.-S. (2009). Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials, 30, 108–117. DOI: 10.1016/j.biomaterials.2008.09.010. http://dx.doi.org/10.1016/j.biomaterials.2008.09.01010.1016/j.biomaterials.2008.09.010Search in Google Scholar

[17] Lin, J., Zhu, G., Zhu, X., Lin, S., Nose, T., & Ding, W. (2008). Aggregate structure change induced by intramolecular helix-coil transition. Polymer, 49, 1132–1136. DOI: 10.1016/j.polymer.2008.01.021. http://dx.doi.org/10.1016/j.polymer.2008.01.02110.1016/j.polymer.2008.01.021Search in Google Scholar

[18] Markland, P., Amidon, G. L., & Yang, V. C. (1999). Modified polypeptides containing γ-benzyl glutamic acid as drug delivery platforms. International Journal of Pharmaceutics, 178, 183–192. DOI: 10.1016/S0378-5173(98)00373-1. http://dx.doi.org/10.1016/S0378-5173(98)00373-110.1016/S0378-5173(98)00373-1Search in Google Scholar

[19] Moffitt, M., & Eisenberg, A. (1997). Scaling relations and size control of block ionomer microreactors containing different metal ions. Macromolecules, 30, 4363–4373. DOI: 10.1021/ma961577x. http://dx.doi.org/10.1021/ma961577x10.1021/ma961577xSearch in Google Scholar

[20] Nah, J.-W., Jeong, Y.-I., & Cho, C.-S. (1998). Clonazepam release from core-shell type nanoparticles composed of poly(γ-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Journal of Polymer Science Part B: Polymer Physics, 36, 415–423. DOI: 10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q. http://dx.doi.org/10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-Q10.1002/(SICI)1099-0488(199802)36:3<415::AID-POLB3>3.0.CO;2-QSearch in Google Scholar

[21] Oh, I., Lee, K., Kwon, H.-Y., Lee, Y.-B., Shin, S.-C., Cho, C.-S., & Kim, C.-K. (1999). Release of adriamycin from poly(γ-benzyl-l-glutamate)/poly(ethylene oxide) nanoparticles. International Journal of Pharmaceutics, 181, 107–115. DOI: 10.1016/S0378-5173(99)00012-5. http://dx.doi.org/10.1016/S0378-5173(99)00012-510.1016/S0378-5173(99)00012-5Search in Google Scholar

[22] Price, C., Kendall, K. D., Stubbersfield, R. B., & Wright, B. (1983). Thermodynamics of micellization of a polystyrene-b-poly(ethylene/propylene) block copolymer in n-decane. Polymer Communications, 24, 326–328. Search in Google Scholar

[23] Rao, J., Luo, Z., Ge, Z., Liu, H., & Liu, S. (2007). “Schizophrenic” micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer. Biomacromolecules, 8, 3871–3878. DOI: 10.1021/bm700830b. http://dx.doi.org/10.1021/bm700830b10.1021/bm700830bSearch in Google Scholar

[24] Rodríguez-Hernández, J., & Lecommandoux, S. (2005). Reversible inside-out micellization of pH-responsive and watersoluble vesicles based on polypeptide diblock copolymers. Journal of the American Chemical Society, 127, 2026–2027. DOI: 10.1021/ja043920g. http://dx.doi.org/10.1021/ja043920g10.1021/ja043920gSearch in Google Scholar

[25] Rolland, A., O’Mullane, J., Goddard, P., Brookman, L., & Petrak, K. (1992). New macromolecular carriers for drugs. I. Preparation and characterization of poly (oxyethylene-b-isoprene-b-oxyethylene) block copolymer aggregates. Journal of Applied Polymer Science, 44, 1195–1203. DOI: 10.1002/app.1992.070440709. http://dx.doi.org/10.1002/app.1992.07044070910.1002/app.1992.070440709Search in Google Scholar

[26] Sun, J., Chen, X., Deng, C., Yu, H., Xie, Z., & Jing, X. (2007). Direct formation of giant vesicles from synthetic polypeptides. Langmuir, 23, 8308–8315. DOI: 10.1021/la701038f. http://dx.doi.org/10.1021/la701038f10.1021/la701038fSearch in Google Scholar

[27] Tang, D. M., Lin, J. P., Lin, S. L., Zhang, S. N., Chen, T., & Tian, X. H. (2004). Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromolecular Rapid Communications, 25, 1241–1246. DOI: 10.1002/marc.y200400100. http://dx.doi.org/10.1002/marc.200400100Search in Google Scholar

[28] Wong, M. S., Cha, J. N., Choi, K.-S., Deming, T. J., & Stucky, G. D. (2002). Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Letters, 2, 583–587. DOI: 10.1021/nl020244c. http://dx.doi.org/10.1021/nl020244c10.1021/nl020244cSearch in Google Scholar

[29] Xu, Z., Feng, L., Ji, J., Cheng, S., Chen, Y., & Yi, C. (1998). The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. European Polymer Journal, 34, 1499–1504. DOI: 10.1016/S0014-3057(97)00279-6. http://dx.doi.org/10.1016/S0014-3057(97)00234-610.1016/S0014-3057(97)00279-6Search in Google Scholar

[30] Zhang, L., & Eisenberg, A. (1999). Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules, 32, 2239–2249. DOI: 10.1021/ma981039f. http://dx.doi.org/10.1021/ma981039f10.1021/ma981039fSearch in Google Scholar

[31] Zhang, L., & Eisenberg, A. (1996). Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society, 118, 3168–3181. DOI: 10.1021/ja953709s. http://dx.doi.org/10.1021/ja953709s10.1021/ja953709sSearch in Google Scholar

[32] Zhang, W., Shi, L., An, Y., Wu, K., Gao, L. Liu, Z., Ma, R., Meng, Q., Zhao, C., & He, B. (2004). Adsorption of poly(4-vinyl pyridine) unimers into polystyrene-block-poly(acrylic acid) micelles in ethanol due to hydrogen bonding. Macromolecules, 37, 2924–2929. DOI: 10.1021/ma0499775. http://dx.doi.org/10.1021/ma049977510.1021/ma0499775Search in Google Scholar

[33] Zhong, X. F., Varshney, S. K., & Eisenberg, A. (1992). Critical micelle lengths for ionic blocks in solutions of polystyrene-b-poly(sodium acrylate) ionomers. Macromolecules, 25, 7160–7167. DOI: 10.1021/ma00052a014. http://dx.doi.org/10.1021/ma00052a01410.1021/ma00052a014Search in Google Scholar

[34] Zhu, G. (2010). Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane. Chemical Papers, 64, 34–39. DOI: 10.2478/s11696-009-0090-y. http://dx.doi.org/10.2478/s11696-009-0090-y10.2478/s11696-009-0090-ySearch in Google Scholar

[35] Zhu, G. (2009a). Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol. Chemical Papers, 63, 683–688. DOI: 10.2478/s11696-009-0074-y. http://dx.doi.org/10.2478/s11696-009-0074-y10.2478/s11696-009-0074-ySearch in Google Scholar

[36] Zhu, G. (2009b). Study on self-assembly of poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and poly(γ-benzyl l-glutamate)-blockpoly(ethylene glycol) copolymer in ethanol. Journal of Macromolecular Science, Part A, 46, 892–898. DOI: 10.1080/10601320903078313. http://dx.doi.org/10.1080/1060132090307831310.1080/10601320903078313Search in Google Scholar

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
  2. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
  3. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
  4. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
  5. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
  6. GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
  7. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
  8. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
  9. Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
  10. Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
  11. Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
  12. ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
  13. Asymmetric synthesis of machilin C and its analogue
  14. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
  15. Single crystal X-ray structure and optical properties of anthraquinone-based dyes
  16. Low-density polyethylene in mixtures of hexane and benzene derivates
  17. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
  18. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
  19. Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
  20. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0046-2/html
Scroll to top button