Home Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
Article
Licensed
Unlicensed Requires Authentication

Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone

  • Zuzana Bujdošová EMAIL logo , Katarína Györyová , Daniela Hudecová , Jana Kovářová and Ladislav Halás
Published/Copyright: August 14, 2010
Become an author with De Gruyter Brill

Abstract

New zinc(II) 4-chloro- and 5-chlorosalicylate complex compounds of the general formula ((4- or 5-Cl)C6H3(2-OH)COO)2Zn · Ln (where L = methyl 3-pyridylcarbamate, phenazone; n = 2, 4) were prepared and characterized by elemental analysis, thermal analysis (TG/DTG, DTA), and IR spectroscopy. During thermal decomposition, mpc, phen, chlorosalicylic acid, chlorophenol, carbon dioxide, and carbon monoxide were released. Volatile products of the thermal decomposition were confirmed by mass spectrometry. The final solid product of the thermal decomposition up to 700°C was zinc oxide or metallic zinc. Antimicrobial activity of the compounds prepared was tested against various strains of bacteria, yeasts and filamentous fungi. The highest antimicrobial effect was determined against the G+ bacteria S. aureus.

[1] Bock, C. W., Katz, A. K., & Glusker, J. P. (1995). Hydration of zinc ions: A comparison with magnesium and beryllium ions. Journal of the American Chemical Society, 117, 3754–3765. DOI: 10.1021/ja00118a012. http://dx.doi.org/10.1021/ja00118a01210.1021/ja00118a012Search in Google Scholar

[2] Bujdošová, Z., Györyová, K., Kovřová, J., Hudecová, D., & Halás, L. (2009). Synthesis, biological and physicochemical properties of zinc(II) salicylate and 5-chlorosalicylate complexes with theophylline and urea. Journal of Thermal Analysis and Calorimetry, 98, 151–159. DOI: 10.1007/s10973-009-0093-5. http://dx.doi.org/10.1007/s10973-009-0093-510.1007/s10973-009-0093-5Search in Google Scholar

[3] Crichton, R. R. (2008). Biological inorganic chemistry: An introduction. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[4] Chomič, J., Györyová, K., Szunyogová, E., & Kovářová, J. (2004). Thermal study of zinc(II) salicylate complex compounds with bioactive ligands. Journal of Thermal Analysis and Calorimetry, 76, 33–41. DOI: 10.1023/B:JTAN.0000027800.14514.c2. http://dx.doi.org/10.1023/B:JTAN.0000027800.14514.c210.1023/B:JTAN.0000027800.14514.c2Search in Google Scholar

[5] Dudová, B., Hudecová, D., Pokorný, R., Mikulášová, M., Palicová, M., Segľa, P., & Melník, M. (2001). Copper complexes with bioactive ligands. Folia Microbiologica, 46, 379–384. DOI: 10.1007/BF02814425. http://dx.doi.org/10.1007/BF0281442510.1007/BF02814425Search in Google Scholar PubMed

[6] Erdélyiová, A., Györyová, K., Gyepes, R., Halás, L., & Kovářová, J. (2009). Synthesis, spectral, thermal and structural study of bis(2-bromobenzoato-O,O′)-bis(methyl-3-pyridylcarbamate-N)-zinc(II). Polyhedron, 28, 131–137. DOI:10.1016/j.poly.2008.09.017. http://dx.doi.org/10.1016/j.poly.2008.09.01710.1016/j.poly.2008.09.017Search in Google Scholar

[7] Grasselli, J. G., & Ritchey, W. M. (1975). Atlas of spectral data and physical constants for organic compounds (2nd ed.). Cleveland, OH, USA: CRC Press. Search in Google Scholar

[8] Györyová, K., Chomič, J., & Kovářová, J. (2005). Thermal behaviour of zinc(II) 5-chlorosalicylate complex compounds. Journal of Thermal Analysis and Calorimetry, 80, 375–380. DOI: 10.1007/s10973-005-0663-0. http://dx.doi.org/10.1007/s10973-005-0663-010.1007/s10973-005-0663-0Search in Google Scholar

[9] Györyová, K., Chomič, J., Szunyogová, E., Piknová, L., Zeleňák, V., & Vargová, Z. (2006). Thermal study of zinc(II) 4-chlorosalicylate complex compounds with bioactive ligands. Journal of Thermal Analysis and Calorimetry, 84, 727–732. DOI: 10.1007/s10973-005-7542-6. http://dx.doi.org/10.1007/s10973-005-7542-610.1007/s10973-005-7542-6Search in Google Scholar

[10] Hudecová, D., Jantová, S., Melník, M., & Uher, M. (1996). New azidometalkojates and their biological activity. Folia Microbiologica, 41, 473–476. DOI: 10.1007/BF02814660. http://dx.doi.org/10.1007/BF0281466010.1007/BF02814660Search in Google Scholar PubMed

[11] Jantová, S., Hudecová, D., Stankovský, Š., Špirková, K., & Ružeková, Ľ. (1995). Antibacterial effect of substituted 4-quinazolylhydrazines and their arylhydrazones determined by a modified microdilution method. Folia Microbiologica, 40, 611–614. DOI: 10.1007/BF02818517. http://dx.doi.org/10.1007/BF0281851710.1007/BF02818517Search in Google Scholar PubMed

[12] Lewandowski, W., Kalinowska, M., & Lewandowska, H. (2005). The influence of metals on the electronic system of biologically important ligands. Spectroscopic study of benzoates, salicylates, nicotinates and isoorotates. Review. Journal of Inorganic Biochemistry, 99, 1407–1423. DOI:10.1016/j.jinorgbio.2005.04.010. http://dx.doi.org/10.1016/j.jinorgbio.2005.04.01010.1016/j.jinorgbio.2005.04.010Search in Google Scholar PubMed

[13] Manhas, B. S., & Trikha, A. K. (1982). Relationships between the direction of shifts in the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Journal of the Indian Chemical Society, 59, 315–319. Search in Google Scholar

[14] Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds (5th ed.). New York, NY, USA: Wiley. Search in Google Scholar

[15] Smith, R. M. (2004). Understanding mass spectra: A basic approach (2nd ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar

[16] Szunyogová, E., Mudroňová, D., Györyová, K., Nemcová, R., Kovářová, J., & Piknová-Findoráková, L. (2007). The physicochemical and biological properties of zinc(II) complexes. Journal of Thermal Analysis and Calorimetry, 88, 355–361. DOI: 10.1007/s10973-006-8115-z. http://dx.doi.org/10.1007/s10973-006-8115-z10.1007/s10973-006-8115-zSearch in Google Scholar

[17] Vallee, B. L., & Auld, D. S. (1993). New perspective on zinc biochemistry: Cocatalytic sites in multi-zinc enzymes. Biochemistry, 32, 6493–6500. DOI: 10.1021/bi00077a001. http://dx.doi.org/10.1021/bi00077a00110.1021/bi00077a001Search in Google Scholar PubMed

[18] Zeleňák, V., Györyová, K., & Mlynarčík, D. (2002). Antibacterial and antifungal activity of zinc(II) carboxylates with/without N-donor organic ligands. Metal-Based Drugs, 8, 269–274. DOI: 10.1155/MBD.2002.269. http://dx.doi.org/10.1155/MBD.2002.26910.1155/MBD.2002.269Search in Google Scholar PubMed PubMed Central

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
  2. Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
  3. Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
  4. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
  5. Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
  6. GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
  7. Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
  8. Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
  9. Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
  10. Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
  11. Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
  12. ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
  13. Asymmetric synthesis of machilin C and its analogue
  14. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
  15. Single crystal X-ray structure and optical properties of anthraquinone-based dyes
  16. Low-density polyethylene in mixtures of hexane and benzene derivates
  17. Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
  18. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
  19. Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
  20. ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0039-1/html?lang=en
Scroll to top button