Abstract
This study focuses on the preparation, single crystal X-ray diffraction, characterization, and optical properties of some anthraquinone-based dyes. The anthraquinone-based antimicrobial dye N-{2-[(9,10-dioxo-9,10-dihydroanthracen-1-yl)amino]-2-oxoethyl}-N,N-dimethylbutan-1-aminium chloride monohydrate (III) was obtained from 1-aminoanthraquinone (I) via 2-chloro-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide (II) using known preparation and characterization methods. Single crystal X-ray diffraction analysis of III revealed a monoclinic system, space group P21/n, Z = 4. Photoluminescence properties of anthraquinone dyes I–III were also investigated. These dyes gave an intense emission (λmax = 341 nm) upon the irradiation by UV light and showed photoluminescence quantum yields of 73 %, 66 %, and 61 % with long excited-state lifetimes of 6.87 ns, 6.14 ns, and 5.69 ns, respectively. These anthraquinone dyes are of interest as an organic light emitting material for electroluminescent devices.
[1] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of Chemistry Society, Perkin Transaction 2, 1987, 1–19. DOI: 10.1039/P298700000S1. http://dx.doi.org/10.1039/p298700000s110.1039/p298700000s1Search in Google Scholar
[2] Aslantas, M., Kurtoglu, N., Sahin, E., & Kurtoglu, M. (2007). 4-[(E)-Phenyldiazenyl]-2-[(E)-phenyliminomethyl]phenol. Acta Crystallographica Section E, E63, o3637. DOI: 10.1107/S1600536807036197. http://dx.doi.org/10.1107/S160053680703619710.1107/S1600536807036197Search in Google Scholar
[3] Balabanova, M., Popova, L., & Tchipeva, R. (2003). Dyes in dermatology. Clinics in Dermatology, 21, 2–6. DOI:10.1016/S0738-081X(02)00330-9. http://dx.doi.org/10.1016/S0738-081X(02)00330-910.1016/S0738-081X(02)00330-9Search in Google Scholar
[4] Berghot, M. A., & Moawad, E. B. (1995). Synthesis of novel substituted anthra[1,9-bc]pyridin-6-ones. Bollettino Chimico Farmaceutico, 134, 564–568. Search in Google Scholar
[5] Birbiçer, N., Kurtoğlu, M., & Serin, S. (1999). Synthesis of two new azo ligands containing polyoxyethylene glycol and their complexes with Ni(II), Cu(II) and Co(II). Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 29, 1353–1364. DOI: 10.1080/00945719909351704. 10.1080/00945719909351704Search in Google Scholar
[6] Boonnak, N., Chantrapromma, S., Fun, H. K., Anjum, S., Ali, S., Atta-ur-Rahman, & Karalai, C. (2005). 3-(3,7-Dimethylocta-2,6-dienyloxy)-1,8-dihydroxy-6-methyl-9,10-anthraquinone. Acta Crystallographica Section E, E61, o410–o412. DOI: 10.1107/S1600536805001674. http://dx.doi.org/10.1107/S160053680500167410.1107/S1600536805001674Search in Google Scholar
[7] Chen, T. R., Chen, J. D., Keng, T. C., & Wang, J. C. (2001). A new pyridylamine for blue light electroluminescent devices. Tetrahedron Letter, 42, 7915–7917. DOI: 10.1016/S0040-4039(01)01693-8. http://dx.doi.org/10.1016/S0040-4039(01)01693-810.1016/S0040-4039(01)01693-8Search in Google Scholar
[8] Dahiya, P., Choudhury, S. D., Maity, D. K., Mukherjee, T., & Pal, H. (2008). Solvent polarity induced structural changes in 2,6-diamino-9,10-anthraquinone dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 134–141. DOI: 10.1016/j.saa.2007.03.018. http://dx.doi.org/10.1016/j.saa.2007.03.01810.1016/j.saa.2007.03.018Search in Google Scholar PubMed
[9] Farrugia, L. J. (1997). ORTEP-3 for Windows — a version of ORTEP-III with a graphical user interface (GUI). Journal of Applied Crystallography, 30, 565. DOI: 10.1107/S0021889897003117. http://dx.doi.org/10.1107/S002188989700311710.1107/S0021889897003117Search in Google Scholar
[10] Gilbert, A., & Baggott, J. (1991). Essentials of molecular photochemistry. Boca Raton, FL, USA: CRC Press. Search in Google Scholar
[11] Gordon, P. F., & Gregory, P. (1983). Organic chemistry in colour (p. 162). Berlin, Germany: Springer. 10.1515/9783112541746Search in Google Scholar
[12] Gregory, P. (1991). High-technology applications of organic colorants. New York, NY, USA: Plenum Press. 10.1007/978-1-4615-3822-6Search in Google Scholar
[13] Guilbault, G. G. (Ed.) (1990). Practical fluorescence (2nd ed.). New York, NY, USA: Marcel Dekker. Search in Google Scholar
[14] Kirk, R. E., & Othmer, D. F. (1993). Dyes, anthraquinones. In J. I. Kroschwitz, & M. Howe-Grant (Eds.), Kirk-Othmer encyclopedia of chemical technology (4th ed., Vol. 4, pp. 653–666). New York, NY, USA: Wiley. Search in Google Scholar
[15] Kocaokutgen, H., Gür, M., Soylu, M. S., & Lönnecke, P. (2005). Spectroscopic, thermal and crystal structure properties of novel (E)-2,6-dimethyl-4-(4-tert-butylphenyldiazenyl)phenyl acrylate dye. Dyes and Pigments, 67, 99–103. DOI: 10.1016/j.dyepig.2004.09.021. http://dx.doi.org/10.1016/j.dyepig.2004.09.02110.1016/j.dyepig.2004.09.021Search in Google Scholar
[16] Kulkarni, A. P., Zhu, Y., & Jenekhe, S. A. (2005). Quinoxalinecontaining polyfluorenes: Synthesis, photophysics, and stable blue electroluminescence. Macromolecules, 38, 1553–1363. DOI: 10.1021/ma048118d. http://dx.doi.org/10.1021/ma048118d10.1021/ma048118dSearch in Google Scholar
[17] Kurtoğlu, M., & Baydemir, S. A. (2007). Studies on mononuclear transition metal chelates derived from a novel (E, E)-dioxime: synthesis, characterization and biological activity. Journal of Coordination Chemistry, 60, 655–665. DOI:10.1080/00958970600896076. http://dx.doi.org/10.1080/0095897060089607610.1080/00958970600896076Search in Google Scholar
[18] Kurtoğlu, M., Birbiçer, N., Kimyonen, Ü., & Serin, S. (1999a). Determination of pKa values of some azo dyes in acetonitrile with perchloric acid. Dyes and Pigments, 41, 143–147. DOI: 10.1016/S0143-7208(98)00077-1. http://dx.doi.org/10.1016/S0143-7208(98)00077-110.1016/S0143-7208(98)00077-1Search in Google Scholar
[19] Kurtoğlu, M., İspir, E., Kurtoğlu, N., & Serin, S. (2008). Novel vic-dioximes: Synthesis, complexation with transition metal ions, spectral studies and biological activity. Dyes and Pigments, 77, 75–80. DOI: 10.1016/j.dyepig.2007.03.010. http://dx.doi.org/10.1016/j.dyepig.2007.03.01010.1016/j.dyepig.2007.03.010Search in Google Scholar
[20] Kurtoğlu, N., Kurtoğlu, M., & Serin, S. (1999b). Synthesis and characterisation of some novel Schiff base metal complexes with polyoxyethylene glycols as substituents. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 29, 1779–1791. DOI: 10.1080/00945719909351735. 10.1080/00945719909351735Search in Google Scholar
[21] Leadbetter, P. W., & Leaver, A. T. (1989). Disperse dyes — the challenge of the 1990s. Review of Progress in Coloration, 19, 33–39. http://dx.doi.org/10.1111/j.1478-4408.1989.tb03758.x10.1111/j.1478-4408.1989.tb03758.xSearch in Google Scholar
[22] Liu, J., & Sun, G. (2008). The synthesis of novel cationic anthraquinone dyes with high potent antimicrobial activity. Dyes and Pigments, 77, 380–386. DOI: 10.1016/j.dyepig.2007.06.009. http://dx.doi.org/10.1016/j.dyepig.2007.06.00910.1016/j.dyepig.2007.06.009Search in Google Scholar
[23] Ma, M., Sun, Y., & Sun, G. (2003). Antimicrobial cationic dyes: part 1: synthesis and characterization. Dyes and Pigments, 58, 27–35. DOI: 10.1016/S0143-7208(03)00025-1. http://dx.doi.org/10.1016/S0143-7208(03)00025-110.1016/S0143-7208(03)00025-1Search in Google Scholar
[24] Malone, J. F., Andrews, S. J., Bullock, J. F., & Docherty, R. (1996). The solid state structure of CI Disperse Orange 44. Dyes and Pigments, 30, 183–200. DOI: 10.1016/0143-7208(95)00076-3. http://dx.doi.org/10.1016/0143-7208(95)00076-310.1016/0143-7208(95)00076-3Search in Google Scholar
[25] Martelli, S., Dzieduszycka, M., Stefanska, B., Gracz, M. B., & Borowski, E. (1988). Synthesis and antineoplastic evaluations of 1,4-bis(aminoalkanamido)-9,10-anthracenediones. Journal of Medicinal Chemistry, 31, 1956–1959. DOI: 10.1021/jm00118a015. http://dx.doi.org/10.1021/jm00118a01510.1021/jm00118a015Search in Google Scholar PubMed
[26] Nardelli, M. (1995). PARST95 — an update to PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. Journal of Applied Crystallography, 28, 659. DOI: 10.1107/S0021889895007138. http://dx.doi.org/10.1107/S002188989500713810.1107/S0021889895007138Search in Google Scholar
[27] Øllgaard, H., Frost, L., Galster, J., & Hansen, O. C. (1999). Survey of azo-colorants in Denmark: Consumption, use, health and environmental aspects. Copenhagen: Ministry of Environment and Energy, Danish Environmental Protection Agency. (Miljøprojekt No. 509, No. XX 1998, pp. 147–290). Search in Google Scholar
[28] Osaheni, J. A., & Jenekhe, S. A. (1994). Enhancement of luminescence in polymer nanocomposites. Chemistry Materials, 6, 1906–1909. DOI: 10.1021/cm00047a002. http://dx.doi.org/10.1021/cm00047a00210.1021/cm00047a002Search in Google Scholar
[29] Patrauchan, M. A., & Oriel, P. J. (2003). Degradation of benzyldimethylalkylammonium chloride by Aeromonas hydrophila sp. K. Journal of Applied Microbiology, 94, 266–272. DOI: 10.1046/j.1365-2672.2003.01829.x. http://dx.doi.org/10.1046/j.1365-2672.2003.01829.x10.1046/j.1365-2672.2003.01829.xSearch in Google Scholar PubMed
[30] Peters, A. T., & Freeman, H. S. (Eds.) (1991). Colour chemistry: The design and synthesis of organic dyes and pigments (pp. 193–195). Barking, UK: Elsevier. Search in Google Scholar
[31] Pu, Y. J., Kurata, T., Soma, M., Kido, J., & Nishide, H. (2004). Triphenylamine- and oxadiazole-substituted poly(1,4-phenylenevinylene) s: synthesis, photo-, and electroluminescent properties. Synthetic Metals, 143, 207–214. DOI: 10.1016/j.synthmet.2003.12.003. http://dx.doi.org/10.1016/j.synthmet.2003.12.00310.1016/j.synthmet.2003.12.003Search in Google Scholar
[32] Rembold, M. W., & Kramer, H. E. A. (1980). The role of anthraquinonoid dyes in the catalytic fading’of dye mixtures — substituent-dependent triplet yield of diaminoanthraquinones. Journal of the Society Dyers and Colourists, 96, 122–126. DOI: 10.1111/j.1478-4408.1980.tb03518.x. http://dx.doi.org/10.1111/j.1478-4408.1980.tb03518.x10.1111/j.1478-4408.1980.tb03518.xSearch in Google Scholar
[33] Rigaku/MSC. (2005). CrystalClear [computer software]. Rigaku/MSC Inc.: The Woodlands, TX, USA. Search in Google Scholar
[34] Sadeghi-Aliabadi, H., Tabarzadi, M., & Zarghi, A. (2004). Synthesis and cytotoxic evaluation of two novel anthraquinone derivatives. Il Farmaco, 59, 645–649. DOI: 10.1016/j.farmac.2004.03.006. http://dx.doi.org/10.1016/j.farmac.2004.03.00610.1016/j.farmac.2004.03.006Search in Google Scholar PubMed
[35] Serin, S., & Kurtoğlu, M. (1994). Potentiometric titrations of some azo dyes containing a hydroxy group with tetrabutylammonium hydroxide in acetonitrile. Analyst, 119, 2213–2215. DOI: 10.1039/AN9941902213. http://dx.doi.org/10.1039/an994190221310.1039/AN9941902213Search in Google Scholar
[36] Sheldrick, G. M. (1997a). SHELXS-97. Program for crystal structure solution. Göttingen, Germany: University of Göttingen. Search in Google Scholar
[37] Sheldrick, G. M. (1997b). SHELXL-97. Program for refinement of crystal structures. Göttingen, Germany: University of Göttingen. Search in Google Scholar
[38] Shinar, J. (Ed.) (2004). Organic light-emitting devices: A survey. New York, NY, USA: Springer. 10.1007/978-0-387-21720-8Search in Google Scholar
[39] Singh, K., Mahajan, A., & Robinson, W. T. (2007). Single crystal X-ray structure analysis of some heterocyclic monoazo disperse dyes. Dyes and Pigments, 74, 95–102. DOI:10.1016/j.dyepig.2006.01.018. http://dx.doi.org/10.1016/j.dyepig.2006.01.01810.1016/j.dyepig.2006.01.018Search in Google Scholar
[40] Spek, A. L. (2003). PLATON, a multipurpose crystallographic tool. Utrecht, The Netherlands: University of Utrecht. Search in Google Scholar
[41] Sun, G., & Ma, M. (2005). U.S. Patent Application No. US 2005/0011012 A1. Arlington, VA, USA: United States Patent and Trademark Office. Search in Google Scholar
[42] Temel, A., Özbey, S., & Ertan, N. (1996). Crystal structure of hydrazone form of 1-butyl-3-cyano-6-hydroxy-4-methyl-5-(2-thiazolylazo)-2-(1H)-pyridone. Dyes and Pigments, 32, 237–244. DOI: 10.1016/S0143-7208(96)00028-9. http://dx.doi.org/10.1016/S0143-7208(96)00028-910.1016/S0143-7208(96)00028-9Search in Google Scholar
[43] Wilson, A. J. C. (Ed.) (1995). International tables for crystallography: Mathematical, physical and chemical tables (2nd ed., Vol. C). Dordrecht, The Netherlands: Kluwer. Search in Google Scholar
[44] Yang, W., You, X. L., Zhong, Y., & Zhang, D. C. (2007). The crystal structure of 4-[(2-methoxy-4-nitro-phenylazo)-phenyl]-dimethyl-amine. Dyes and Pigments, 73, 317–321. DOI: 10.1016/j.dyepig.2005.11.013. http://dx.doi.org/10.1016/j.dyepig.2005.11.01310.1016/j.dyepig.2005.11.013Search in Google Scholar
[45] Zhao, D. X., Li, W. L., Hong, Z. R., Liu, X., Liang, C., & Zhao, D. (1999). White light emitting organic electroluminescent devices using lanthanide dinuclear complexes. Journal of Luminescence, 82, 105–109. DOI: 10.1016/S0022-2313(99)00038-1. http://dx.doi.org/10.1016/S0022-2313(99)00038-110.1016/S0022-2313(99)00038-1Search in Google Scholar
[46] Zhu, J. C., Liang, Y., Wang, H. S., Pan, Y. M., & Zhang, Y. (2007). 1,3,8-Trihydroxy-6-methylanthraquinone monohydrate. Acta Crystallographica Section E, E63, 233–235. DOI: 10.1107/S1600536806049178. 10.1107/S1600536806049178Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
- Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
- Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
- Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
- Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
- GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
- Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
- Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
- Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
- Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
- Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
- ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
- Asymmetric synthesis of machilin C and its analogue
- Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
- Single crystal X-ray structure and optical properties of anthraquinone-based dyes
- Low-density polyethylene in mixtures of hexane and benzene derivates
- Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
- Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
- Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
- ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate
Articles in the same Issue
- A deuterium-palladium electrode as a new sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile and benzonitrile
- Chemical variability of Artemisia herba-alba Asso essential oils from East Morocco
- Ag and Cu loaded on TiO2/graphite as a catalyst for Escherichia coli-contaminated water disinfection
- Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film
- Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis
- GC/MS analysis of gaseous degradation products formed during extrusion blow molding process of PE films
- Preparation, spectral, thermal, and biological properties of zinc(II) 4-chloro- and 5-chlorosalicylate complexes with methyl 3-pyridylcarbamate and phenazone
- Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation
- Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS
- Photophysical properties of novel ferrocenyl quinoline derivatives with red emission in solutions and polymeric matrices
- Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction
- ArF laser photolytic deposition and thermal modification of an ultrafine chlorohydrocarbon
- Asymmetric synthesis of machilin C and its analogue
- Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents
- Single crystal X-ray structure and optical properties of anthraquinone-based dyes
- Low-density polyethylene in mixtures of hexane and benzene derivates
- Factors influencing aggregation behavior of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer in mixed solvents
- Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides
- Rapid synthesis and bioactivities of 3-(nitromethylene)indolin-2-one analogues
- ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate