Home Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
Article
Licensed
Unlicensed Requires Authentication

Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria

  • Gheorghe Maria EMAIL logo and Dragoş-Nicolae Ştefan
Published/Copyright: May 6, 2010
Become an author with De Gruyter Brill

Abstract

Optimal operation of a chemical reactor according to various performance criteria often drives the system towards critical boundaries. Thus, precise evaluation of runaway limits in the parametric space becomes a crucial problem not only for the reactor’s safe operation, but also for over-designing the system. However, obtaining an accurate estimate for operating limits is a difficult task due to the limited validity of kinetic models describing complex processes, as well as the inherent fluctuations of the system’s properties (catalyst, raw-material quality). This paper presents a comparison of several effective methods of deriving critical conditions for the case of a tubular fixed-bed catalytic reactor used for aniline production in the vapour phase. Even though the methods being compared are related to one another, the generalised sensitivity criterion of Morbidelli-Varma (MV) seems to be more robust, not depending on a particular parameter being perturbed, when compared to the criteria that detect an incipient loss of system stability in the critical region (i.e., div-methods based on the system’s Jacobian and Green’s function matrix analysis). Combined application of div- and MV criteria allows for an accurate evaluation of the distance from the reactor’s nominal conditions to the safety limits.

[1] Adrover, A., Creta, F., Giona, M., & Valorani, M. (2007) Explosion limits and runaway criteria: A stretching-based approach. Chemical Engineering Science, 62, 1171–1183. DOI: 10.1016/j.ces.2006.11.007. http://dx.doi.org/10.1016/j.ces.2006.11.00710.1016/j.ces.2006.11.007Search in Google Scholar

[2] Alós, M. A., Nomen, R., Sempere, J. M., Strozzi, F., & Zaldívar, J. M. (1998) Generalized criteria for boundary safe conditions in semi-batch processes: simulated analysis and experimental results. Chemical Engineering and Processing, 37, 405–421. DOI: 10.1016/S0255-2701(98)00048-8. http://dx.doi.org/10.1016/S0255-2701(98)00048-810.1016/S0255-2701(98)00048-8Search in Google Scholar

[3] Balakotaiah, V., & Luss, D. (2004) Explicit runaway criterion for catalytic reactors with transport limitations. AIChE Journal, 37, 1780–1788. DOI: 10.1002/aic.690371203. http://dx.doi.org/10.1002/aic.69037120310.1002/aic.690371203Search in Google Scholar

[4] Bonvin, D. (1998) Optimal operation of batch reactors-a personal view. Journal of Process Control, 8, 355–368. DOI: 10.1016/S0959-1524(98)00010-9. http://dx.doi.org/10.1016/S0959-1524(98)00010-910.1016/S0959-1524(98)00010-9Search in Google Scholar

[5] Bosch, J., Kerr, D. C., Snee, T. J., Strozzi, F., & Zaldívar, J. M. (2004) Runaway detection in a pilot-plant facility. Industrial & Engineering Chemistry Research, 43, 7019–7024. DOI: 10.1021/ie049540l. http://dx.doi.org/10.1021/ie049540l10.1021/ie049540lSearch in Google Scholar

[6] Chen, M. S. K., Erickson, L. E., & Fan, L. (1970) Consideration of sensitivity and parameter uncertainty in optimal process design. Industrial & Engineering Chemistry Process Design and Development, 9, 514–521. DOI: 10.1021/i260036a004. http://dx.doi.org/10.1021/i260036a00410.1021/i260036a004Search in Google Scholar

[7] Doraiswamy, L. K., & Sharma, M. M. (1984) Heterogeneous reactions: Analysis, examples, and reactor design (Vol. 1). New York, NY, USA: Wiley. Search in Google Scholar

[8] Fotopoulos, J., Georgakis, C., & Stenger, H. G., Jr. (1994) Uncertainty issues in the modeling and optimization of batch reactors with tendency models. Chemical Engineering Science, 49, 5533–5547. DOI: 10.1016/0009-2509(94)00336-X. http://dx.doi.org/10.1016/0009-2509(94)00336-X10.1016/0009-2509(94)00336-XSearch in Google Scholar

[9] Froment, G. F., & Bischoff, K. B. (1990) Chemical reactor analysis and design. New York, NY, USA: Wiley. Search in Google Scholar

[10] Grewer, T. (1994). Thermal hazards of chemical reactions. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[11] Hedges, R. M., Jr., & Rabitz, H. (1985) Parametric sensitivity of system stability in chemical dynamics. Journal of Chemical Physics, 82, 3674–3684. DOI: 10.1063/1.448903. http://dx.doi.org/10.1063/1.44890310.1063/1.448903Search in Google Scholar

[12] Maria, G., & Stefan, D.-N. (2010) Variability of operating safety limits with catalyst within a fixed-bed catalytic reactor for vapour-phase nitrobenzene hydrogenation. Journal of Loss Prevention in the Process Industries, 23, 112–126. DOI: 10.1016/j.jlp.2009.06.007. http://dx.doi.org/10.1016/j.jlp.2009.06.00710.1016/j.jlp.2009.06.007Search in Google Scholar

[13] Mönnigmann, M. (2004) Constructive nonlinear dynamics for the design of chemical engineering processes. PhD Thesis, RWTH Aachen, Germany: VDI Verlag. Search in Google Scholar

[14] Mönnigmann, M., & Marquardt, W. (2003) Steady-state process optimization with guaranted robust stability and feasibility. AIChE Journal, 49, 3110–3126. DOI: 10.1002/aic.690491212. http://dx.doi.org/10.1002/aic.69049121210.1002/aic.690491212Search in Google Scholar

[15] Morbidelli, M., & Varma, A. (1988) A generalized criterion for parametric sensitivity: Application to thermal explosion theory. Chemical Engineering Science, 43, 91–102. DOI: 10.1016/0009-2509(88)87129-X. http://dx.doi.org/10.1016/0009-2509(88)87129-X10.1016/0009-2509(88)87129-XSearch in Google Scholar

[16] Quina, M. M. J., & Quinta Ferreira, R. M. (1999) Thermal runaway conditions of a partially diluted catalytic reactor. Industrial & Engineering Chemistry Research, 38, 4615–4623. DOI: 10.1021/ie9807295. http://dx.doi.org/10.1021/ie980729510.1021/ie9807295Search in Google Scholar

[17] Rihani, D. N., Narayanan, T. K., & Doraiswamy, L. K. (1965) Kinetics of catalytic vapor-phase hydrogenation of nitrobenzene to aniline. Industrial & Engineering Chemistry Process Design and Development, 4, 403–410. DOI: 10.1021/i260016a012. http://dx.doi.org/10.1021/i260016a01210.1021/i260016a012Search in Google Scholar

[18] Ruppen, D., Bonvin, D., & Rippin, D. W. T. (1997) Implementation of adaptive optimal operation for a semi-batch reaction system. Computers & Chemical Engineering, 22, 185–199. DOI: 10.1016/S0098-1354(96)00358-4. http://dx.doi.org/10.1016/S0098-1354(96)00358-410.1016/S0098-1354(96)00358-4Search in Google Scholar

[19] Satterfield, C. N. (1970) Mass transfer in heterogeneous catalysis. Cambridge, MA, USA: MIT Press. Search in Google Scholar

[20] Seinfeld, J., & McBride, W. L. (1970) Optimization with multiple performance criteria. Application to minimization of parameter sensitivities in a refinery model. Industrial & Engineering Chemistry Process Design and Development, 9, 53–57. DOI: 10.1021/i260033a010. http://dx.doi.org/10.1021/i260033a01010.1021/i260033a010Search in Google Scholar

[21] Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2002) Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty, Computers & Chemical Engineering, 27, 27–44. DOI: 10.1016/S0098-1354(02)00117-5. http://dx.doi.org/10.1016/S0098-1354(02)00117-510.1016/S0098-1354(02)00117-5Search in Google Scholar

[22] Stefan, D. N., & Maria, G. (2009) Derivation of operating region runaway boundaries for the vapour phase catalytic reactor used for aniline production. Revista de Chimie, 60, 949–956. Search in Google Scholar

[23] Stoessel, F. (2008). Thermal safety of chemical processes. Risk assessment and process design. Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/978352762160610.1002/9783527621606Search in Google Scholar

[24] Strozzi, F., & Zaldívar, J. M. (1994) A general method for assessing the thermal stability of batch chemical reactors by sensitivity calculation based on Lyapunov exponents. Chemical Engineering Science, 49, 2681–2688. DOI: 10.1016/0009-2509(94)E0067-Z. http://dx.doi.org/10.1016/0009-2509(94)E0067-Z10.1016/0009-2509(94)E0067-ZSearch in Google Scholar

[25] Strozzi, F., Zaldívar, J. M., Kronberg, A. E., & Westerterp, K. R. (1999) On-line runaway detection in batch reactors using chaos theory techniques. AIChE Journal, 45, 2429–2443. DOI: 10.1002/aic.690451116. http://dx.doi.org/10.1002/aic.69045111610.1002/aic.690451116Search in Google Scholar

[26] Trambouze, P., Van Landeghem, H., & Wauquier, J. P. (1988) Chemical reactors: Design, engineering, operation. Paris, France: Editions Technip. Search in Google Scholar

[27] Vajda, S., & Rabitz, H. (1992) Parametric sensitivity and self-similarity in thermal explosion theory. Chemical Engineering Science, 47, 1063–1078. DOI: 10.1016/0009-2509(92)80232-2. http://dx.doi.org/10.1016/0009-2509(92)80232-210.1016/0009-2509(92)80232-2Search in Google Scholar

[28] Varma, A., Morbidelli, M., & Wu, H. (1999). Parametric sensitivity in chemical systems. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO978051172177910.1017/CBO9780511721779Search in Google Scholar

[29] Watanabe, N., Nishimura, Y., & Matsubara, M. (1973) Optimal design of chemical processes involving parameter uncertainty. Chemical Engineering Science, 28, 905–913. DOI: 10.1016/0009-2509(77)80025-0. http://dx.doi.org/10.1016/0009-2509(77)80025-010.1016/0009-2509(77)80025-0Search in Google Scholar

[30] Westerterp, K. R., & Molga, E. J. (2006) Safety and runaway prevention in batch and semibatch reactors-A review. Chemical Engineering Research and Design, 84, 543–552. DOI: 10.1205/cherd.05221. http://dx.doi.org/10.1205/cherd.0522110.1205/cherd.05221Search in Google Scholar

[31] Westerterp, K. R., & Molga, E. J. (2004) No more runaways in fine chemical reactors. Industrial & Engineering Chemistry Research, 43, 4585–4594. DOI: 10.1021/ie030725m. http://dx.doi.org/10.1021/ie030725m10.1021/ie030725mSearch in Google Scholar

[32] Wen, C. Y., & Chang, M. T. (1968) Optimal design of systems involving parameter uncertainty. Industrial & Engineering Chemistry Process Design and Development, 7, 49–53. DOI: 10.1021/i260025a010. http://dx.doi.org/10.1021/i260025a01010.1021/i260025a010Search in Google Scholar

[33] Zaldívar, J. M., Cano, J., Alós, M. A., Sempere, J., Nomen, R., Lister, D., Maschio, G., Obertopp, T., Gilles, E. D., Bosch, J., & Strozzi, F. (2003) A general criterion to define runaway limits in chemical reactors. Journal of Loss Prevention in the Process Industries, 16, 187–200. DOI: 10.1016/S0950-4230(03)00003-2. http://dx.doi.org/10.1016/S0950-4230(03)00003-210.1016/S0950-4230(03)00003-2Search in Google Scholar

[34] Zaldívar Comenges, J. M., Strozzi, F., & Bosch Pagans, J. (2005) Divergence as a goal function for control and on-line optimization. AIChE Journal, 51, 678–681. DOI: 10.1002/aic.10339. http://dx.doi.org/10.1002/aic.1033910.1002/aic.10339Search in Google Scholar

[35] Zaldívar, J.-M., & Strozzi, F. (2010) Phase-space volume based control of semibatch reactors. Chemical Engineering Research and Design, 88, 320–330. DOI: 10.1016/j.cherd.2009.04.008. http://dx.doi.org/10.1016/j.cherd.2009.04.00810.1016/j.cherd.2009.04.008Search in Google Scholar

Published Online: 2010-5-6
Published in Print: 2010-8-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
  2. Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
  3. Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
  4. Liquid chromatographic determination of meloxicam in serum after solid phase extraction
  5. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
  6. Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
  7. Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
  8. Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
  9. Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
  10. Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
  11. In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
  12. Synthesis of brushite nanoparticles at different temperatures
  13. Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
  14. Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
  15. Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
  16. Visual spectroscopy detection of triclosan
  17. Euphorbia antisyphilitica residues as a new source of ellagic acid
  18. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
  19. A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0035-5/pdf
Scroll to top button