Abstract
Optimal operation of a chemical reactor according to various performance criteria often drives the system towards critical boundaries. Thus, precise evaluation of runaway limits in the parametric space becomes a crucial problem not only for the reactor’s safe operation, but also for over-designing the system. However, obtaining an accurate estimate for operating limits is a difficult task due to the limited validity of kinetic models describing complex processes, as well as the inherent fluctuations of the system’s properties (catalyst, raw-material quality). This paper presents a comparison of several effective methods of deriving critical conditions for the case of a tubular fixed-bed catalytic reactor used for aniline production in the vapour phase. Even though the methods being compared are related to one another, the generalised sensitivity criterion of Morbidelli-Varma (MV) seems to be more robust, not depending on a particular parameter being perturbed, when compared to the criteria that detect an incipient loss of system stability in the critical region (i.e., div-methods based on the system’s Jacobian and Green’s function matrix analysis). Combined application of div- and MV criteria allows for an accurate evaluation of the distance from the reactor’s nominal conditions to the safety limits.
[1] Adrover, A., Creta, F., Giona, M., & Valorani, M. (2007) Explosion limits and runaway criteria: A stretching-based approach. Chemical Engineering Science, 62, 1171–1183. DOI: 10.1016/j.ces.2006.11.007. http://dx.doi.org/10.1016/j.ces.2006.11.00710.1016/j.ces.2006.11.007Search in Google Scholar
[2] Alós, M. A., Nomen, R., Sempere, J. M., Strozzi, F., & Zaldívar, J. M. (1998) Generalized criteria for boundary safe conditions in semi-batch processes: simulated analysis and experimental results. Chemical Engineering and Processing, 37, 405–421. DOI: 10.1016/S0255-2701(98)00048-8. http://dx.doi.org/10.1016/S0255-2701(98)00048-810.1016/S0255-2701(98)00048-8Search in Google Scholar
[3] Balakotaiah, V., & Luss, D. (2004) Explicit runaway criterion for catalytic reactors with transport limitations. AIChE Journal, 37, 1780–1788. DOI: 10.1002/aic.690371203. http://dx.doi.org/10.1002/aic.69037120310.1002/aic.690371203Search in Google Scholar
[4] Bonvin, D. (1998) Optimal operation of batch reactors-a personal view. Journal of Process Control, 8, 355–368. DOI: 10.1016/S0959-1524(98)00010-9. http://dx.doi.org/10.1016/S0959-1524(98)00010-910.1016/S0959-1524(98)00010-9Search in Google Scholar
[5] Bosch, J., Kerr, D. C., Snee, T. J., Strozzi, F., & Zaldívar, J. M. (2004) Runaway detection in a pilot-plant facility. Industrial & Engineering Chemistry Research, 43, 7019–7024. DOI: 10.1021/ie049540l. http://dx.doi.org/10.1021/ie049540l10.1021/ie049540lSearch in Google Scholar
[6] Chen, M. S. K., Erickson, L. E., & Fan, L. (1970) Consideration of sensitivity and parameter uncertainty in optimal process design. Industrial & Engineering Chemistry Process Design and Development, 9, 514–521. DOI: 10.1021/i260036a004. http://dx.doi.org/10.1021/i260036a00410.1021/i260036a004Search in Google Scholar
[7] Doraiswamy, L. K., & Sharma, M. M. (1984) Heterogeneous reactions: Analysis, examples, and reactor design (Vol. 1). New York, NY, USA: Wiley. Search in Google Scholar
[8] Fotopoulos, J., Georgakis, C., & Stenger, H. G., Jr. (1994) Uncertainty issues in the modeling and optimization of batch reactors with tendency models. Chemical Engineering Science, 49, 5533–5547. DOI: 10.1016/0009-2509(94)00336-X. http://dx.doi.org/10.1016/0009-2509(94)00336-X10.1016/0009-2509(94)00336-XSearch in Google Scholar
[9] Froment, G. F., & Bischoff, K. B. (1990) Chemical reactor analysis and design. New York, NY, USA: Wiley. Search in Google Scholar
[10] Grewer, T. (1994). Thermal hazards of chemical reactions. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar
[11] Hedges, R. M., Jr., & Rabitz, H. (1985) Parametric sensitivity of system stability in chemical dynamics. Journal of Chemical Physics, 82, 3674–3684. DOI: 10.1063/1.448903. http://dx.doi.org/10.1063/1.44890310.1063/1.448903Search in Google Scholar
[12] Maria, G., & Stefan, D.-N. (2010) Variability of operating safety limits with catalyst within a fixed-bed catalytic reactor for vapour-phase nitrobenzene hydrogenation. Journal of Loss Prevention in the Process Industries, 23, 112–126. DOI: 10.1016/j.jlp.2009.06.007. http://dx.doi.org/10.1016/j.jlp.2009.06.00710.1016/j.jlp.2009.06.007Search in Google Scholar
[13] Mönnigmann, M. (2004) Constructive nonlinear dynamics for the design of chemical engineering processes. PhD Thesis, RWTH Aachen, Germany: VDI Verlag. Search in Google Scholar
[14] Mönnigmann, M., & Marquardt, W. (2003) Steady-state process optimization with guaranted robust stability and feasibility. AIChE Journal, 49, 3110–3126. DOI: 10.1002/aic.690491212. http://dx.doi.org/10.1002/aic.69049121210.1002/aic.690491212Search in Google Scholar
[15] Morbidelli, M., & Varma, A. (1988) A generalized criterion for parametric sensitivity: Application to thermal explosion theory. Chemical Engineering Science, 43, 91–102. DOI: 10.1016/0009-2509(88)87129-X. http://dx.doi.org/10.1016/0009-2509(88)87129-X10.1016/0009-2509(88)87129-XSearch in Google Scholar
[16] Quina, M. M. J., & Quinta Ferreira, R. M. (1999) Thermal runaway conditions of a partially diluted catalytic reactor. Industrial & Engineering Chemistry Research, 38, 4615–4623. DOI: 10.1021/ie9807295. http://dx.doi.org/10.1021/ie980729510.1021/ie9807295Search in Google Scholar
[17] Rihani, D. N., Narayanan, T. K., & Doraiswamy, L. K. (1965) Kinetics of catalytic vapor-phase hydrogenation of nitrobenzene to aniline. Industrial & Engineering Chemistry Process Design and Development, 4, 403–410. DOI: 10.1021/i260016a012. http://dx.doi.org/10.1021/i260016a01210.1021/i260016a012Search in Google Scholar
[18] Ruppen, D., Bonvin, D., & Rippin, D. W. T. (1997) Implementation of adaptive optimal operation for a semi-batch reaction system. Computers & Chemical Engineering, 22, 185–199. DOI: 10.1016/S0098-1354(96)00358-4. http://dx.doi.org/10.1016/S0098-1354(96)00358-410.1016/S0098-1354(96)00358-4Search in Google Scholar
[19] Satterfield, C. N. (1970) Mass transfer in heterogeneous catalysis. Cambridge, MA, USA: MIT Press. Search in Google Scholar
[20] Seinfeld, J., & McBride, W. L. (1970) Optimization with multiple performance criteria. Application to minimization of parameter sensitivities in a refinery model. Industrial & Engineering Chemistry Process Design and Development, 9, 53–57. DOI: 10.1021/i260033a010. http://dx.doi.org/10.1021/i260033a01010.1021/i260033a010Search in Google Scholar
[21] Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2002) Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty, Computers & Chemical Engineering, 27, 27–44. DOI: 10.1016/S0098-1354(02)00117-5. http://dx.doi.org/10.1016/S0098-1354(02)00117-510.1016/S0098-1354(02)00117-5Search in Google Scholar
[22] Stefan, D. N., & Maria, G. (2009) Derivation of operating region runaway boundaries for the vapour phase catalytic reactor used for aniline production. Revista de Chimie, 60, 949–956. Search in Google Scholar
[23] Stoessel, F. (2008). Thermal safety of chemical processes. Risk assessment and process design. Weinheim, Germany: Wiley-VCH. http://dx.doi.org/10.1002/978352762160610.1002/9783527621606Search in Google Scholar
[24] Strozzi, F., & Zaldívar, J. M. (1994) A general method for assessing the thermal stability of batch chemical reactors by sensitivity calculation based on Lyapunov exponents. Chemical Engineering Science, 49, 2681–2688. DOI: 10.1016/0009-2509(94)E0067-Z. http://dx.doi.org/10.1016/0009-2509(94)E0067-Z10.1016/0009-2509(94)E0067-ZSearch in Google Scholar
[25] Strozzi, F., Zaldívar, J. M., Kronberg, A. E., & Westerterp, K. R. (1999) On-line runaway detection in batch reactors using chaos theory techniques. AIChE Journal, 45, 2429–2443. DOI: 10.1002/aic.690451116. http://dx.doi.org/10.1002/aic.69045111610.1002/aic.690451116Search in Google Scholar
[26] Trambouze, P., Van Landeghem, H., & Wauquier, J. P. (1988) Chemical reactors: Design, engineering, operation. Paris, France: Editions Technip. Search in Google Scholar
[27] Vajda, S., & Rabitz, H. (1992) Parametric sensitivity and self-similarity in thermal explosion theory. Chemical Engineering Science, 47, 1063–1078. DOI: 10.1016/0009-2509(92)80232-2. http://dx.doi.org/10.1016/0009-2509(92)80232-210.1016/0009-2509(92)80232-2Search in Google Scholar
[28] Varma, A., Morbidelli, M., & Wu, H. (1999). Parametric sensitivity in chemical systems. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO978051172177910.1017/CBO9780511721779Search in Google Scholar
[29] Watanabe, N., Nishimura, Y., & Matsubara, M. (1973) Optimal design of chemical processes involving parameter uncertainty. Chemical Engineering Science, 28, 905–913. DOI: 10.1016/0009-2509(77)80025-0. http://dx.doi.org/10.1016/0009-2509(77)80025-010.1016/0009-2509(77)80025-0Search in Google Scholar
[30] Westerterp, K. R., & Molga, E. J. (2006) Safety and runaway prevention in batch and semibatch reactors-A review. Chemical Engineering Research and Design, 84, 543–552. DOI: 10.1205/cherd.05221. http://dx.doi.org/10.1205/cherd.0522110.1205/cherd.05221Search in Google Scholar
[31] Westerterp, K. R., & Molga, E. J. (2004) No more runaways in fine chemical reactors. Industrial & Engineering Chemistry Research, 43, 4585–4594. DOI: 10.1021/ie030725m. http://dx.doi.org/10.1021/ie030725m10.1021/ie030725mSearch in Google Scholar
[32] Wen, C. Y., & Chang, M. T. (1968) Optimal design of systems involving parameter uncertainty. Industrial & Engineering Chemistry Process Design and Development, 7, 49–53. DOI: 10.1021/i260025a010. http://dx.doi.org/10.1021/i260025a01010.1021/i260025a010Search in Google Scholar
[33] Zaldívar, J. M., Cano, J., Alós, M. A., Sempere, J., Nomen, R., Lister, D., Maschio, G., Obertopp, T., Gilles, E. D., Bosch, J., & Strozzi, F. (2003) A general criterion to define runaway limits in chemical reactors. Journal of Loss Prevention in the Process Industries, 16, 187–200. DOI: 10.1016/S0950-4230(03)00003-2. http://dx.doi.org/10.1016/S0950-4230(03)00003-210.1016/S0950-4230(03)00003-2Search in Google Scholar
[34] Zaldívar Comenges, J. M., Strozzi, F., & Bosch Pagans, J. (2005) Divergence as a goal function for control and on-line optimization. AIChE Journal, 51, 678–681. DOI: 10.1002/aic.10339. http://dx.doi.org/10.1002/aic.1033910.1002/aic.10339Search in Google Scholar
[35] Zaldívar, J.-M., & Strozzi, F. (2010) Phase-space volume based control of semibatch reactors. Chemical Engineering Research and Design, 88, 320–330. DOI: 10.1016/j.cherd.2009.04.008. http://dx.doi.org/10.1016/j.cherd.2009.04.00810.1016/j.cherd.2009.04.008Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Articles in the same Issue
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3