Home Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
Article
Licensed
Unlicensed Requires Authentication

Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals

  • Kalsang Tharpa EMAIL logo , Kanakapura Basavaiah and Kanakapura Vinay
Published/Copyright: May 6, 2010
Become an author with De Gruyter Brill

Abstract

Two simple, sensitive, and selective spectrophotometric methods for the determination of 5-(aminosulfonyl)-4-chloro-2-((2-furanylmethyl)amino)benzoic acid (furosemide, FUR) are described. The methods are based on acid hydrolysis of FUR to free primary aromatic amine and diazotization followed by coupling with N-1-napthylethylene diamine (NEDA) (method A) or 4,5-dihydroxynaphthalene-2,7-disulfonic acid (chromotropic acid, CTA) (method B). The colored reaction product can be measured spectrophotometrically at 520 nm (method A) or 500 nm (method B). Beer’s law is obeyed over the ranges of 1.75–21.0 μg mL−1 and 2.5–30.0 μg mL−1, for method A and method B, respectively. Apparent molar absorptivities and Sandell’s sensitivities (in L mol−1 cm−1 and μg cm−2 per 0.001 absorbance unit, respectively) were 1.34 × 104 and 0.0253 using NEDA as the coupling agent, and 8.5 × 103 and 0.0389 using CTA for the same purpose. Analysis of solutions containing seven different concentrations of FUR gave a correlation coefficient of 0.9979 using NEDA and 0.9984 using CTA, while the slope and the correlation coefficient of the regression equation were calculated. The reaction stoichiometry in both methods was evaluated by the limiting logarithmic method and was found to be 1: 1 (diazotized FUR: NEDA or diazotized FUR: CTA). The methods were successfully applied to the determination of FUR in spiked human urine and in pharmaceutical formulations. The recovery of FUR from spiked urine was satisfactory resulting in the values of (109.4 ± 4.37) % using NEDA and (113.0 ± 4.74) % using CTA. Results of the analysis of pharmaceuticals demonstrated that the proposed procedures are at least as accurate and precise as the official method while a statistical analysis indicated that there was no significant difference between the results obtained by the proposed methods and those of the official method.

[1] Abdel-Hamid, M. E. (2000). High-performance liquid chromatography-mass spectrometric analysis of furosemide in plasma and its use in pharmacokinetic studies. Il Farmaco, 55, 448–454. DOI: 10.1016/S0014-827X(00)00064-1. http://dx.doi.org/10.1016/S0014-827X(00)00064-110.1016/S0014-827X(00)00064-1Search in Google Scholar

[2] Abou-Auda, H. S., Al-Yamani, M. J., Morad, A. M., Bawazir, S. A., Khan S. Z., & Al-Khamis, K. I. (1998). High-performance liquid chromatographic determination of furosemide in plasma and urine and its use in bioavailability studies. Journal of Chromatography B: Biomedical Sciences and Applications, 710, 121–128. DOI: 10.1016/S0378-4347(98)00058-9. http://dx.doi.org/10.1016/S0378-4347(98)00058-910.1016/S0378-4347(98)00058-9Search in Google Scholar

[3] Basavaiah, K., Chandrashekar, U., & Nagegowda, P. (2005). Rapid titrimetric and spectrophotometric determination of frusemide (furosemide) in formulations using bromatebromide mixture and methyl orange. Indian Journal of Chemical Technology, 12, 149–155. Search in Google Scholar

[4] Carda-Broch, S., Esteve-Romero, J., Ruiz-Angel, M. J., & García-Alvarez-Coque, M. C. (2002). Determination of furosemide in urine samples by direct injection in a micellar liquid chromatographic system. Analyst, 127, 29–34. DOI: 10.1039/b108358a. http://dx.doi.org/10.1039/b108358a10.1039/b108358aSearch in Google Scholar

[5] Espinosa Bosch, M., Ruiz Sánchez, A. J., Sánchez Rojas, F., & Bosch Ojeda, C. (2008). Recent developments in analytical determination of furosemide. Journal of Pharmaceutical and Biomedical Analysis, 48, 519–532. DOI: 10.1016/j.jpba.2008.07.003. http://dx.doi.org/10.1016/j.jpba.2008.07.00310.1016/j.jpba.2008.07.003Search in Google Scholar

[6] European Directorate for the Quality of Medicines (2001). European pharmacopoeia (IV ed., pp. 1228–1229). Strasbourg, France: Council of Europe. Search in Google Scholar

[7] European Medicines Agency (2005). Validation of analytical procedures: Text and methodology Q2(R 1). London, UK: European Medicines Agency. Search in Google Scholar

[8] García, M. S., Sanchez-Pedreño, C., Albero M. I., & Ródenas, V. (1997). Flow-injection spectrophotometric determination of frusemide or sulphathiazole in pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 15, 453–459. DOI: 10.1016/S0731-7085(96)01874-2. http://dx.doi.org/10.1016/S0731-7085(96)01874-210.1016/S0731-7085(96)01874-2Search in Google Scholar

[9] Gomez, C. G., von Plessing, C. R., Godoy, C. G. M., Reinbach, R. H., & Godoy, R. R. (2005). Method validation for the determination of furosemide in plasma by liquid-liquid extraction and high-performance liquid chromatography with fluorescence detection. Journal of the Chilean Chemical Society, 50, 479–482. DOI:10.4067/S0717-97072005000200008. 10.4067/S0717-97072005000200008Search in Google Scholar

[10] Gotardo, M. A., Gigante, A. C., Pezza, L., & Pezza, H. R. (2004). Determination of furosemide in pharmaceutical formulations by diffuse reflectance spectroscopy. Talanta, 64, 361–365. DOI:10.1016/j.talanta.2004.02.034. http://dx.doi.org/10.1016/j.talanta.2004.02.03410.1016/j.talanta.2004.02.034Search in Google Scholar

[11] Gölcüu, A. (2006). Spectrophotometric determination of furosemide in pharmaceutical dosage forms using complex formation with Cu(II). Journal of Analytical Chemistry, 61, 748–754. DOI: 10.1134/S1061934806080053 http://dx.doi.org/10.1134/S106193480608005310.1134/S1061934806080053Search in Google Scholar

[12] Guzmán, A., Agüí, L., Pedrero, M., Yáñez-Sedeño, P., & Pingarrón, J. M. (2003). Flow injection and HPLC determination of furosemide using pulsed amperometric detection at microelectrodes. Journal of Pharmaceutical and Biomedical Analysis, 33, 923–933. DOI: 10.1016/S0731-7085(03)00422-9. http://dx.doi.org/10.1016/S0731-7085(03)00422-910.1016/S0731-7085(03)00422-9Search in Google Scholar

[13] Higuchi, T., & Brochmann-Hanssen, E. (1997). Pharmaceutical analysis (5th ed., pp. 142). New Delhi, India: CBS Publishers. Search in Google Scholar

[14] Ioannou, P. C., Andrikopoulou, D. A., Glynou, K. M., Tzompanaki, G. M., & Rusakova, N. V. (1998). Spectrofluorimetric determination of anthranilic acid derivatives based on terbium sensitized fluorescence. Analyst, 123, 2839–2843. DOI: 10.1039/a806093b. http://dx.doi.org/10.1039/a806093b10.1039/a806093bSearch in Google Scholar PubMed

[15] Issopoulos, P. B. (1989). Spectrophotometric determination of microquantities of frusemide using iso- and heteropolyanions of molybdenum(VI) as oxidizing agents. Fresenius’ Journal of Analytical Chemistry, 334, 554–557. DOI: 10.1007/BF00483576. http://dx.doi.org/10.1007/BF0048357610.1007/BF00483576Search in Google Scholar

[16] Jankowski, A., Skorek-Jankowska, A., & Lamparczyk, H. (1997). Determination and pharmacokinetics of a furosemide-amiloride drug combination. Journal of Chromatography B: Biomedical Sciences and Applications, 693, 383–391. DOI: 10.1016/S0378-4347(97)00055-8. http://dx.doi.org/10.1016/S0378-4347(97)00055-810.1016/S0378-4347(97)00055-8Search in Google Scholar

[17] Llorent-Martínez, E. J., Ortega-Barrales, P., & Molina-Díaz, A. (2005). Multicommuted flow-through fluorescence optosensor for determination of furosemide and triamterene. Analytical and Bioanalytical Chemistry, 383, 797–803. DOI: 10.1007/s00216-005-0079-5. http://dx.doi.org/10.1007/s00216-005-0079-510.1007/s00216-005-0079-5Search in Google Scholar

[18] Martindale, W. (1989). In J. E. F. Reynolds (Ed.), Martindale: The extra pharmacopoeia (29th ed., pp. 977–978, 987–991). London, UK: The Pharmaceutical Press. Search in Google Scholar

[19] Mendham, J., Denney, R. C., Barnes, J. D., & Thomas, M. (2004). Vogel’s textbook of quantitative chemical analysis (6th ed., pp. 88). Harlow, UK: Pearson Education. Search in Google Scholar

[20] Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry (5th ed.). Harlow, UK: Pearson Education. Search in Google Scholar

[21] Millership, J. S., Parker, C., & Donnelly, D. (2005). Ratio spectra derivative spectrophotometry for the determination of furosemide and spironolactone in a capsule formulation. Il Farmaco, 60, 333–338. DOI:10.1016/j.farmac.2005.02.001. http://dx.doi.org/10.1016/j.farmac.2005.02.00110.1016/j.farmac.2005.02.001Search in Google Scholar

[22] Mishra, P., Katrolia, D., & Agrawal, R. K. (1990). A simple colorimetric determination of furosemide in dosage forms. Indian Journal of Pharmaceutical Sciences, 52, 155–157. Search in Google Scholar

[23] Ptǎček, P., Vyhnálek, O., Breuel, H. P., & Macek, J. (1996). Determination of furosemide in plasma and urine by gas chromatography/mass spectrometry. Arzneimittelforschung, 46, 277–283. Search in Google Scholar

[24] Reeuwijk, H. J. E. M., Tjaden, U. R., & van der Greef, J. (1992). Simultaneous determination of furosemide and amiloride in plasma using high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 575, 269–274. DOI: 10.1016/0378-4347(92)80155-J. http://dx.doi.org/10.1016/0378-4347(92)80155-J10.1016/0378-4347(92)80155-JSearch in Google Scholar

[25] Rose, J. (1964). Advanced physico-chemical experiments (pp. 67). London, UK: Pitman. Search in Google Scholar

[26] Sastry, C. S. P., Prasad, T. N. V., Sastry, B. S., & Rao, E. V. (1988). Spectrophotometric methods for the determination of some diuretics using 3-methyl-2-benzothiazolinone hydrazone. Analyst, 113, 255–258. DOI: 10.1039/AN9881300255. http://dx.doi.org/10.1039/an988130025510.1039/an9881300255Search in Google Scholar

[27] Sastry, C. S. P., Suryanarayana, M. V., & Tipirneni, A. S. R. P. (1989). Application of p-N,N-dimethylphenylenediamine dihydrochloride for the determination of some diuretics. Talanta, 36, 491–494. DOI: 10.1016/0039-9140(89)80234-6. http://dx.doi.org/10.1016/0039-9140(89)80234-610.1016/0039-9140(89)80234-6Search in Google Scholar

[28] Semaan, F. S., & Cavalheiro, É. T. G. (2006). Spectrophotometric determination of furosemide based on its complexation with Fe(III) in ethanolic medium using a flow injection procedure. Analytical Letters, 39, 2557–2567. DOI: 10.1080/00032710600824698. http://dx.doi.org/10.1080/0003271060082469810.1080/00032710600824698Search in Google Scholar

[29] Semaan, F. S., Neto, A. J. S., Lanças, F.M., & Cavalheiro, É. T. G. (2005a). Rapid HPLC-DAD determination of furosemide in tablets using a short home-made column. Analytical Letters, 38, 1651–1658. DOI: 10.1081/AL-200065813. http://dx.doi.org/10.1081/AL-20006581310.1081/AL-200065813Search in Google Scholar

[30] Semaan, F. S., De Sousa, R. A., & Cavalheiro, E. T. G. (2005b). Flow injection spectrophotometric determination of furosemide in pharmaceuticals by the bleaching of a permanganate carrier solution. Journal of Flow Injection Analysis, 22, 34–37. Search in Google Scholar

[31] Semaan, F. S., Nogueira, P. A., & Cavalheiro, É. T. G. (2008). Flow-based fluorimetric determination of furosemide in pharmaceutical formulations and biological samples: use of micelar media to improve sensitivity. Analytical Letters, 41, 66–79. DOI: 10.1080/00032710701746782. http://dx.doi.org/10.1080/0003271070174678210.1080/00032710701746782Search in Google Scholar

[32] Shabir, G. A. (2003). Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. Journal of Chromatography A, 987, 57–66. DOI: 10.1016/S0021-9673(02)01536-4. http://dx.doi.org/10.1016/S0021-9673(02)01536-410.1016/S0021-9673(02)01536-4Search in Google Scholar

[33] Shah, J., Jan, M. R., & Khan, M. A. (2005). Determination of furosemide by simple diazotization method in pharmaceutical preparations. Journal of the Chinese Chemical Society, 52, 347–352. 10.1002/jccs.200500052Search in Google Scholar

[34] Sevillano-Cabeza, A., Campíns-Falcó, P., & Serrador-García, M. C. (1997). Extractive-spectrophotometric determination of furosemide with sodium 1,2-naphthoquinone-4-sulphonate in pharmaceutical formulations. Analytical Letters, 30, 91–107. DOI: 10.1080/00032719708002293. 10.1080/00032719708002293Search in Google Scholar

[35] Tescarollo Dias, I. L., Martins, J. L. S., & de Oliveira Neto, G. (2005). Furosemide determination by first-derivative spectrophotometric method. Analytical Letters, 38, 1159–1116. DOI: 10.1081/AL-200057227. 10.1081/AL-200057227Search in Google Scholar

[36] The British Pharmacopoeia Commission (2002). The British pharmacopoeia (pp. 809–811, 2183–2184). London, UK: The Stationary Office. Search in Google Scholar

[37] The United States Pharmacopoeial Convention (2000). The United States pharmacopoeia XXIV (pp. 756). Rockville, MD, USA: United States Pharmacopoeial Convention. Search in Google Scholar

[38] Živanović, L., Agatonović, S., & Radulović, D. (1990). Spectrophotometric determination of furosemide as its Fe(III) complex in pharmaceutical preparations. Microchimica Acta, 100, 49–54. DOI: 10.1007/BF01244497. http://dx.doi.org/10.1007/BF0124449710.1007/BF01244497Search in Google Scholar

Published Online: 2010-5-6
Published in Print: 2010-8-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
  2. Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
  3. Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
  4. Liquid chromatographic determination of meloxicam in serum after solid phase extraction
  5. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
  6. Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
  7. Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
  8. Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
  9. Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
  10. Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
  11. In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
  12. Synthesis of brushite nanoparticles at different temperatures
  13. Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
  14. Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
  15. Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
  16. Visual spectroscopy detection of triclosan
  17. Euphorbia antisyphilitica residues as a new source of ellagic acid
  18. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
  19. A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0027-5/pdf?lang=en
Scroll to top button