Startseite Application of 31P NMR for added polyphosphate determination in pork meat
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of 31P NMR for added polyphosphate determination in pork meat

  • Aneta Jastrzębska EMAIL logo und Edward Szłyk
Veröffentlicht/Copyright: 27. Mai 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Application of 31P NMR for qualitative and quantitative determination of added phosphorus compounds in meat samples is described. Furthermore, usefulness of the proposed method for monitoring of poly- and pyrophosphates hydrolysis in meat is discussed. Calibration curves based on the 31P resonance line areas were elaborated for Na3P3O9, Na5P3O10, Na2H2P2O7, and K4P2O7 resulting in linearity (R 2 = 0.9976, 0.9953, 0.9974, and 0.9524, respectively), detection limits (DL from 0.0018 mol L−1 for Na3P3O9 to 0.0070 mol L−1 for K4P2O7), and quantification limits (QL from 0.0060 mol L−1 for Na3P3O9 to 0.0234 mol L−1 for K4P2O7). The developed procedure was applied for laboratory prepared meat samples and compared with the standard UV-VIS method. The minimal sample pretreatment, obtained within-day precision (CV ≤ 2.0 %) and accuracy (as recovery ≥ 95 %) suggest 31P NMR as an alternative method of phosphorus determination in food analysis.

[1] Andreotti, G., Trivellone, E., & Motta, A. (2006). Characterization of buffalo milk by 31P-nuclear magnetic resonance spectroscopy. Journal of Food Composition and Analysis, 19, 843–849. DOI: 10.1016/j.jfca.2006.03.014. http://dx.doi.org/10.1016/j.jfca.2006.03.01410.1016/j.jfca.2006.03.014Suche in Google Scholar

[2] Bielicki, G., Benderbous, S., Foucat, L., Donnat, J. P., & Renou, J. P. (1994). Energy catabolism in rabbit muscle as affected by brine injection: 31P NMR studies. Journal of Food Science, 59, 1270–1274. DOI: 10.1111/j.1365-2621.1994.tb14693. http://dx.doi.org/10.1111/j.1365-2621.1994.tb14693.x10.1111/j.1365-2621.1994.tb14693.xSuche in Google Scholar

[3] Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371. DOI: 10.1016/j.talanta.2004.12.024. http://dx.doi.org/10.1016/j.talanta.2004.12.02410.1016/j.talanta.2004.12.024Suche in Google Scholar

[4] Chiba, A., Hamaguchi, M., Kosaka, M., Tokuno, T., Asai, T., & Chichibu, S. (1991). Quality evaluation of fish meat by 31Phosphorus-Nuclear Magnetic Resonance. Journal of Food Science, 56, 660–664. DOI: 10.1111/j.1365-2621.1991.tb05351. http://dx.doi.org/10.1111/j.1365-2621.1991.tb05351.x10.1111/j.1365-2621.1991.tb05351.xSuche in Google Scholar

[5] Colson, J. G., & Marr, D. H. (1973). Quantitative analysis by phosphorus-31 nuclear magnetic resonance spectrometry. Analytical Chemistry, 45, 370–371. DOI: 10.1021/ac60324a-026. http://dx.doi.org/10.1021/ac60324a028Suche in Google Scholar

[6] Hermida, M., Gonzalez, M., Miranda, M., & Rodríguez-Otero, J. L. (2006). Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Science, 73, 635–639. DOI: 10.1016/j.meatsci.2006.03.004. http://dx.doi.org/10.1016/j.meatsci.2006.03.00410.1016/j.meatsci.2006.03.004Suche in Google Scholar

[7] Lahucky, R., Baulain, U., Henning, M., Demo, P., Krska, P., & Liptaj, T. (2002). In vitro 31P NMR studies on biopsy skeletal muscle samples compared with meat quality of normal and heterozygous malignant hyperthermia pigs. Meat Science, 61, 233–241. DOI: 10.1016/S0309-1740(01)00182-6. http://dx.doi.org/10.1016/S0309-1740(01)00182-610.1016/S0309-1740(01)00182-6Suche in Google Scholar

[8] Laurent, W., Bonny, J. M., & Renou, J. P. (2000). Muscle characterisation by NMR imaging and spectroscopic techniques. Food Chemistry, 69, 419–426. DOI: 10.1016/S0308-8146(00)00051-0. http://dx.doi.org/10.1016/S0308-8146(00)00051-010.1016/S0308-8146(00)00051-0Suche in Google Scholar

[9] Li, W., Bowers, A., Craig, J. A., & Perng, S. K. (1993). Sodium tripolyphosphate stability and effect in ground turkey meat. Journal of Food Science, 58, 501–505. DOI: 10.1111/j.1365-2621.1993.tb04310.x. http://dx.doi.org/10.1111/j.1365-2621.1993.tb04310.x10.1111/j.1365-2621.1993.tb04310.xSuche in Google Scholar

[10] Michaleas, S., & Antoniadou-Vyza, E. (2006). A new approach to quantitative NMR: Fluoroquinolones analysis by evaluating the chemical shift displacements. Journal of Phararmaceutical and Biomedical Analysis, 42, 405–410. DOI: 10.1016/j.jpba.2006.04.016. http://dx.doi.org/10.1016/j.jpba.2006.04.01610.1016/j.jpba.2006.04.016Suche in Google Scholar

[11] Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry, (4th ed.). Harrow, U.K.: Pearson Education/Prentice Hall. Suche in Google Scholar

[12] Monin, G. (1998). Recent methods for predicting quality of whole meat. Meat Science, 49, 231–243. DOI: 10.1016/S0309-1740(98)90051-1. http://dx.doi.org/10.1016/S0309-1740(98)90051-110.1016/S0309-1740(98)90051-1Suche in Google Scholar

[13] Polski Komitet Normalizacyjny (1999). Meat and meat products - Determination of total phosphorus content. Spectrophotometric method. PN-ISO 13730. (in Polish) Suche in Google Scholar

[14] Puolanne, E. J., Ruusunen, M. H., & Vainionpää, J. I. (2001). Combined effects of NaCl and raw meat pH on water-holding in cooked sausage with and without added phosphate. Meat Science, 58, 1–7. DOI: 10.1016/S0309-1740(00)00123-6. http://dx.doi.org/10.1016/S0309-1740(00)00123-610.1016/S0309-1740(00)00123-6Suche in Google Scholar

[15] Renou, J. P., Bielicki, G., Deponge, C., Gachon, P., Micol, D., & Ritz, P. (2004). Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry. Part II: Beef meat. Food Chemistry, 86, 251–256. DOI: 10.1016/j.foodchem.2003.08.021. 10.1016/j.foodchem.2003.08.021Suche in Google Scholar

[16] Sekiguchi, Y., Matsunaga, A., Yamamoto, A., & Inoue, Y. (2000). Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. Journal of Chromatography A, 881, 639–644. DOI: 10.1016/S0021-9673(99)01278-9. http://dx.doi.org/10.1016/S0021-9673(99)01278-910.1016/S0021-9673(99)01278-9Suche in Google Scholar

[17] Shaarani, S. M., Nott, K. P., & Hall, L. D. (2006). Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat. Meat Science, 72, 398–403. DOI: 10.1016/j.meatsci.2005.07.017. http://dx.doi.org/10.1016/j.meatsci.2005.07.01710.1016/j.meatsci.2005.07.017Suche in Google Scholar

[18] Ünal, S. B., Erdoğdu, F., & Ekiz, H. I. (2006). Effect of temperature on phosphate diffusion in meats. Journal of Food Engineering, 76, 119–127. DOI: 10.1016/j.jfoodeng.2005.04.041. http://dx.doi.org/10.1016/j.jfoodeng.2005.04.04110.1016/j.jfoodeng.2005.04.041Suche in Google Scholar

[19] Ünal, S. B., Erdoğdu, F., Ekiz, H. I., & Özdemir, Y. (2004). Experimental theory, fundamentals and mathematical evaluation of phosphate diffusion in meat. Journal of Food Engineering, 65, 263–272. DOI: 10.1016/j.jfoodeng.2004.01.024. http://dx.doi.org/10.1016/j.jfoodeng.2004.01.02410.1016/j.jfoodeng.2004.01.024Suche in Google Scholar

[20] Weilmeier, D. M., & Regenstein, J. M. (2004). Cooking enhances the antioxidant properties of polyphosphates. Food Chemistry and Toxicology, 69, 16–23. DOI: 10.1111/j.1365-2621.2004.tb13473. Suche in Google Scholar

[21] Yan, Z. I., McCarthy, M. J., Klemann, L., Otterburn, M. S., & Finley, J. (1996). NMR applications in complex food systems. Magnetic Resonance Imaging, 14, 979–981. DOI: 10.1016/S0730-725X(96)00200-7. http://dx.doi.org/10.1016/S0730-725X(96)00200-710.1016/S0730-725X(96)00200-7Suche in Google Scholar

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
  2. A novel kinetic-spectrophotometric method for determination of nitrites in water
  3. Characterization of recombinant antibodies for detection of TNT and its derivatives
  4. Improvements in the selection of real components forming a substitute mixture for petroleum fractions
  5. Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
  6. Application of 31P NMR for added polyphosphate determination in pork meat
  7. Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
  8. Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
  9. Artificial neural network prediction of steric hindrance parameter of polymers
  10. Immobilization of porphyrins in poly(hydroxymethylsiloxane)
  11. Preparation and characterization of porous cordierite for potential use in cellular ceramics
  12. Characterization of NiFe2O4 nanoparticles synthesized by various methods
  13. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
  14. QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
  15. Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
  16. Wettability of plasma-polymerized vinyltriethoxysilane film
  17. A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
  18. Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
  19. Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0042-6/html?lang=de
Button zum nach oben scrollen