Abstract
Application of 31P NMR for qualitative and quantitative determination of added phosphorus compounds in meat samples is described. Furthermore, usefulness of the proposed method for monitoring of poly- and pyrophosphates hydrolysis in meat is discussed. Calibration curves based on the 31P resonance line areas were elaborated for Na3P3O9, Na5P3O10, Na2H2P2O7, and K4P2O7 resulting in linearity (R 2 = 0.9976, 0.9953, 0.9974, and 0.9524, respectively), detection limits (DL from 0.0018 mol L−1 for Na3P3O9 to 0.0070 mol L−1 for K4P2O7), and quantification limits (QL from 0.0060 mol L−1 for Na3P3O9 to 0.0234 mol L−1 for K4P2O7). The developed procedure was applied for laboratory prepared meat samples and compared with the standard UV-VIS method. The minimal sample pretreatment, obtained within-day precision (CV ≤ 2.0 %) and accuracy (as recovery ≥ 95 %) suggest 31P NMR as an alternative method of phosphorus determination in food analysis.
[1] Andreotti, G., Trivellone, E., & Motta, A. (2006). Characterization of buffalo milk by 31P-nuclear magnetic resonance spectroscopy. Journal of Food Composition and Analysis, 19, 843–849. DOI: 10.1016/j.jfca.2006.03.014. http://dx.doi.org/10.1016/j.jfca.2006.03.01410.1016/j.jfca.2006.03.014Suche in Google Scholar
[2] Bielicki, G., Benderbous, S., Foucat, L., Donnat, J. P., & Renou, J. P. (1994). Energy catabolism in rabbit muscle as affected by brine injection: 31P NMR studies. Journal of Food Science, 59, 1270–1274. DOI: 10.1111/j.1365-2621.1994.tb14693. http://dx.doi.org/10.1111/j.1365-2621.1994.tb14693.x10.1111/j.1365-2621.1994.tb14693.xSuche in Google Scholar
[3] Cade-Menun, B. J. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371. DOI: 10.1016/j.talanta.2004.12.024. http://dx.doi.org/10.1016/j.talanta.2004.12.02410.1016/j.talanta.2004.12.024Suche in Google Scholar
[4] Chiba, A., Hamaguchi, M., Kosaka, M., Tokuno, T., Asai, T., & Chichibu, S. (1991). Quality evaluation of fish meat by 31Phosphorus-Nuclear Magnetic Resonance. Journal of Food Science, 56, 660–664. DOI: 10.1111/j.1365-2621.1991.tb05351. http://dx.doi.org/10.1111/j.1365-2621.1991.tb05351.x10.1111/j.1365-2621.1991.tb05351.xSuche in Google Scholar
[5] Colson, J. G., & Marr, D. H. (1973). Quantitative analysis by phosphorus-31 nuclear magnetic resonance spectrometry. Analytical Chemistry, 45, 370–371. DOI: 10.1021/ac60324a-026. http://dx.doi.org/10.1021/ac60324a028Suche in Google Scholar
[6] Hermida, M., Gonzalez, M., Miranda, M., & Rodríguez-Otero, J. L. (2006). Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Science, 73, 635–639. DOI: 10.1016/j.meatsci.2006.03.004. http://dx.doi.org/10.1016/j.meatsci.2006.03.00410.1016/j.meatsci.2006.03.004Suche in Google Scholar
[7] Lahucky, R., Baulain, U., Henning, M., Demo, P., Krska, P., & Liptaj, T. (2002). In vitro 31P NMR studies on biopsy skeletal muscle samples compared with meat quality of normal and heterozygous malignant hyperthermia pigs. Meat Science, 61, 233–241. DOI: 10.1016/S0309-1740(01)00182-6. http://dx.doi.org/10.1016/S0309-1740(01)00182-610.1016/S0309-1740(01)00182-6Suche in Google Scholar
[8] Laurent, W., Bonny, J. M., & Renou, J. P. (2000). Muscle characterisation by NMR imaging and spectroscopic techniques. Food Chemistry, 69, 419–426. DOI: 10.1016/S0308-8146(00)00051-0. http://dx.doi.org/10.1016/S0308-8146(00)00051-010.1016/S0308-8146(00)00051-0Suche in Google Scholar
[9] Li, W., Bowers, A., Craig, J. A., & Perng, S. K. (1993). Sodium tripolyphosphate stability and effect in ground turkey meat. Journal of Food Science, 58, 501–505. DOI: 10.1111/j.1365-2621.1993.tb04310.x. http://dx.doi.org/10.1111/j.1365-2621.1993.tb04310.x10.1111/j.1365-2621.1993.tb04310.xSuche in Google Scholar
[10] Michaleas, S., & Antoniadou-Vyza, E. (2006). A new approach to quantitative NMR: Fluoroquinolones analysis by evaluating the chemical shift displacements. Journal of Phararmaceutical and Biomedical Analysis, 42, 405–410. DOI: 10.1016/j.jpba.2006.04.016. http://dx.doi.org/10.1016/j.jpba.2006.04.01610.1016/j.jpba.2006.04.016Suche in Google Scholar
[11] Miller, J. N., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry, (4th ed.). Harrow, U.K.: Pearson Education/Prentice Hall. Suche in Google Scholar
[12] Monin, G. (1998). Recent methods for predicting quality of whole meat. Meat Science, 49, 231–243. DOI: 10.1016/S0309-1740(98)90051-1. http://dx.doi.org/10.1016/S0309-1740(98)90051-110.1016/S0309-1740(98)90051-1Suche in Google Scholar
[13] Polski Komitet Normalizacyjny (1999). Meat and meat products - Determination of total phosphorus content. Spectrophotometric method. PN-ISO 13730. (in Polish) Suche in Google Scholar
[14] Puolanne, E. J., Ruusunen, M. H., & Vainionpää, J. I. (2001). Combined effects of NaCl and raw meat pH on water-holding in cooked sausage with and without added phosphate. Meat Science, 58, 1–7. DOI: 10.1016/S0309-1740(00)00123-6. http://dx.doi.org/10.1016/S0309-1740(00)00123-610.1016/S0309-1740(00)00123-6Suche in Google Scholar
[15] Renou, J. P., Bielicki, G., Deponge, C., Gachon, P., Micol, D., & Ritz, P. (2004). Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry. Part II: Beef meat. Food Chemistry, 86, 251–256. DOI: 10.1016/j.foodchem.2003.08.021. 10.1016/j.foodchem.2003.08.021Suche in Google Scholar
[16] Sekiguchi, Y., Matsunaga, A., Yamamoto, A., & Inoue, Y. (2000). Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. Journal of Chromatography A, 881, 639–644. DOI: 10.1016/S0021-9673(99)01278-9. http://dx.doi.org/10.1016/S0021-9673(99)01278-910.1016/S0021-9673(99)01278-9Suche in Google Scholar
[17] Shaarani, S. M., Nott, K. P., & Hall, L. D. (2006). Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat. Meat Science, 72, 398–403. DOI: 10.1016/j.meatsci.2005.07.017. http://dx.doi.org/10.1016/j.meatsci.2005.07.01710.1016/j.meatsci.2005.07.017Suche in Google Scholar
[18] Ünal, S. B., Erdoğdu, F., & Ekiz, H. I. (2006). Effect of temperature on phosphate diffusion in meats. Journal of Food Engineering, 76, 119–127. DOI: 10.1016/j.jfoodeng.2005.04.041. http://dx.doi.org/10.1016/j.jfoodeng.2005.04.04110.1016/j.jfoodeng.2005.04.041Suche in Google Scholar
[19] Ünal, S. B., Erdoğdu, F., Ekiz, H. I., & Özdemir, Y. (2004). Experimental theory, fundamentals and mathematical evaluation of phosphate diffusion in meat. Journal of Food Engineering, 65, 263–272. DOI: 10.1016/j.jfoodeng.2004.01.024. http://dx.doi.org/10.1016/j.jfoodeng.2004.01.02410.1016/j.jfoodeng.2004.01.024Suche in Google Scholar
[20] Weilmeier, D. M., & Regenstein, J. M. (2004). Cooking enhances the antioxidant properties of polyphosphates. Food Chemistry and Toxicology, 69, 16–23. DOI: 10.1111/j.1365-2621.2004.tb13473. Suche in Google Scholar
[21] Yan, Z. I., McCarthy, M. J., Klemann, L., Otterburn, M. S., & Finley, J. (1996). NMR applications in complex food systems. Magnetic Resonance Imaging, 14, 979–981. DOI: 10.1016/S0730-725X(96)00200-7. http://dx.doi.org/10.1016/S0730-725X(96)00200-710.1016/S0730-725X(96)00200-7Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Artikel in diesem Heft
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6