Startseite Immobilization of modified penicillin G acylase on Sepabeads carriers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Immobilization of modified penicillin G acylase on Sepabeads carriers

  • Milena Žuža EMAIL logo , Nenad Milosavić und Zorica Knežević-Jugović
Veröffentlicht/Copyright: 11. Februar 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme.

[1] Al-Duri, B., & Yong, Y. P. (2000). Lipase immobilisation: an equilibrium study of lipases immobilised on hydrophobic and hydrophilic/hydrophobic supports. Biochemical Engineering Journal, 4, 207–215. DOI: 10.1016/S1369-703X(99)00050-9. http://dx.doi.org/10.1016/S1369-703X(99)00050-910.1016/S1369-703X(99)00050-9Suche in Google Scholar

[2] Alvaro, G., Blanco, R. M., Fernandez-Lafuente, R., & Guisan, J. M. (1990). Immobilization-stabilization of penicillin G acylase from E. coli. Applied Biochemistry and Biotechnology, 26, 181–195. DOI: 10.1007/BF02921533. http://dx.doi.org/10.1007/BF0292153310.1007/BF02921533Suche in Google Scholar

[3] Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Mateo, C., Fernández-Lafuente, R., & Guisán, J. M. (2006). Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 39, 877–882. DOI: 10.1016/j.enzmictec.2006.01.014. http://dx.doi.org/10.1016/j.enzmictec.2006.01.01410.1016/j.enzmictec.2006.01.014Suche in Google Scholar

[4] Blanco, R. M., Calvete, J. J., & Guisán, J. M. (1989). Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint covalent attachment. Enzyme and Microbial Technology, 11, 353–359. DOI: 10.1016/0141-0229(89)90019-7. http://dx.doi.org/10.1016/0141-0229(89)90019-710.1016/0141-0229(89)90019-7Suche in Google Scholar

[5] Cardias, H. C. T., Grininger, C. C., Trevisan, H. C., Guisan, J. M., & Giordano, R. L. C. (1999). Influence of activation on the multipoint immobilization of penicillin G acylase on macroporous silica. Brazilian Journal of Chemical Engineering, 16, 141–148. http://dx.doi.org/10.1590/S0104-6632199900020000510.1590/S0104-66321999000200005Suche in Google Scholar

[6] DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. DOI: 10.1021/ac60111a017. http://dx.doi.org/10.1021/ac60111a01710.1021/ac60111a017Suche in Google Scholar

[7] Eldin, M. S. M., Schroën, C. G. P. H., Janssen, A. E. M., Mita, D. G., & Tramper, J. (2000). Immobilization of penicillin G acylase onto chemically grafted nylon particles. Journal of the Molecular Catalysis B: Enzymatic, 10, 445–451. DOI: 10.1016/S1381-1177(99)00122-8. http://dx.doi.org/10.1016/S1381-1177(99)00122-810.1016/S1381-1177(99)00122-8Suche in Google Scholar

[8] Fernández-Lafuente, R., Rosell, C. M., Alvaro, G., & Guisán, J. M. (1992). Additional stabilization of penicillin G acylaseagarose derivatives by controlled chemical modification with formaldehyde. Enzyme and Microbial Technology, 14, 489–495. DOI: 10.1016/0141-0229(92)90143-C. http://dx.doi.org/10.1016/0141-0229(92)90143-C10.1016/0141-0229(92)90143-CSuche in Google Scholar

[9] Fernandez-Lafuente, R., Rosell, C. M., Caanan-Haden, L., Rodes, L., & Guisan, J. M. (1999). Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives: Dramatic stabilization of penicillin acylase versus organic solvents. Enzyme and Microbial Technology, 24, 96–103. DOI: 10.1016/S0141-0229(98)00102-1. http://dx.doi.org/10.1016/S0141-0229(98)00102-110.1016/S0141-0229(98)00102-1Suche in Google Scholar

[10] Guisán, J. M. (1988). Aldehyde-agarose gel as activated supports for immobilization-stabilization of enzymes. Enzyme and Microbial Technology, 10, 375–382. DOI: 10.1016/0141-0229(88)90018-X. http://dx.doi.org/10.1016/0141-0229(88)90018-X10.1016/0141-0229(88)90018-XSuche in Google Scholar

[11] Guisán, J. M., Alvaro, G., Fernandez-Lafuente, R., Rosell, C. M., Garcia, J. L., & Tagliani, A. (1993). Stabilization of a heterodymeric enzyme by multi-point covalent immobilization: Penicillin G acylase from Kluyvera citrophila. Biotechnology and Bioengineering, 42, 455–464. DOI: 10.1002/bit.260420408. http://dx.doi.org/10.1002/bit.26042040810.1002/bit.260420408Suche in Google Scholar

[12] Gupta, M. N. (1991). Thermostabilization of proteins. Biotechnology and Applied Biochemistry, 14, 1–11. Suche in Google Scholar

[13] Illanes, A., Cabrera, Z., Wilson, L., & Aguirre, C. (2003). Synthesis of cephalexin in ethylene glycol with glyoxylagarose immobilised penicillin acylase: temperature and pH optimisation. Process Biochemistry, 39, 111–117. DOI: 10.1016/S0032-9592(03)00031-1. http://dx.doi.org/10.1016/S0032-9592(03)00031-110.1016/S0032-9592(03)00031-1Suche in Google Scholar

[14] Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochemistry, 43, 1019–1032. DOI: 10.1016/j.procbio. 2008.06.004. http://dx.doi.org/10.1016/j.procbio.2008.06.00410.1016/j.procbio.2008.06.004Suche in Google Scholar

[15] Kallenberg, A., van Rantwijk, F., & Sheldon, R. (2005). Immobilization of penicillin G acylase: the key to optimum performance. Advanced Synthesis and Catalysis, 347, 905–926. DOI: 10.1002/adsc.200505042. http://dx.doi.org/10.1002/adsc.20050504210.1002/adsc.200505042Suche in Google Scholar

[16] Kazan, D., Ertan, H., & Erarslan, A. (1997). Stabilization of Escherichia coli penicillin G acylase against thermal inactivation by cross-linking with dextran dialdehyde polymers. Applied Microbiology and Biotechnology, 48, 191–197. DOI: 10.1007/s002530051037. http://dx.doi.org/10.1007/s00253005103710.1007/s002530051037Suche in Google Scholar

[17] Klibanov, A. M. (1983). Approaches to enzyme stabilization. Biochemical Society Transactions, 11, 19–20. 10.1042/bst0110019Suche in Google Scholar

[18] Kobayashi, M., & Takatsu, K. (1994). Cross-linked stabilization of trypsin with dextran-dialdehyde. Bioscience, Biotechnology, and Biochemistry, 58, 275–278. 10.1271/bbb.58.275Suche in Google Scholar

[19] Knezevic, Z., Milosavic, N., Bezbradica, D., Jakovljevic, Z., & Prodanovic, R. (2006). Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment. Biochemical Engineering Journal, 30, 269–278. DOI: 10.1016/j.bej.2006.05.009. http://dx.doi.org/10.1016/j.bej.2006.05.00910.1016/j.bej.2006.05.009Suche in Google Scholar

[20] López-Gallego, F., Betancor, L., Mateo, C., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Guisán, J. M., & Fernández-Lafuente, R. (2005). Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 119, 70–75. DOI: 10.1016/j.jbiotec.2005.05.021. http://dx.doi.org/10.1016/j.jbiotec.2005.05.02110.1016/j.jbiotec.2005.05.021Suche in Google Scholar

[21] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. 10.1016/S0021-9258(19)52451-6Suche in Google Scholar

[22] Martinek, K., Klibanov, A. M., Goldmacher, V. S., & Berezin, I. V. (1977). The principles of enzyme stabilization. I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica et Biophysica Acta, 485, 1–12. 10.1016/0005-2744(77)90188-7Suche in Google Scholar

[23] Mateo, C., Abian, O., Fernández-Lorente, G., Pedroche, J., Fernández-Lafuente, R., Guisan, J. M., Tam, A., & Daminati, M. (2002). Epoxy Sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnology Progress, 18, 629–634. DOI: 10.1021/bp010171n. http://dx.doi.org/10.1021/bp010171n10.1021/bp010171nSuche in Google Scholar

[24] Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463. DOI: 10.1016/j.enzmictec.2007.01.018. http://dx.doi.org/10.1016/j.enzmictec.2007.01.01810.1016/j.enzmictec.2007.01.018Suche in Google Scholar

[25] Mislovicová, D., Masárová, J., Bucko, M., & Gemeiner, P. (2006). Stability of penicillin G acylase modified with various polysaccharides. Enzyme and Microbial Technology, 39, 579–585. DOI: 10.1016/j.enzmictec.2005.11.012. http://dx.doi.org/10.1016/j.enzmictec.2005.11.01210.1016/j.enzmictec.2005.11.012Suche in Google Scholar

[26] Öztürk, D. C., Kazan, D., & Erarslan, I. (2002). Stabilization and functional properties of Escherichia coli penicillin G acylase with covalent conjugation of anionic polysaccharide carboxymethylcellulose. World Journal of Microbiology and Biotechnology, 18, 881–888. DOI: 10.1023/A:1021262826254. http://dx.doi.org/10.1023/A:102126282625410.1023/A:1021262826254Suche in Google Scholar

[27] Resindion SRL (2006). Mitsubishi Chemical Corporation: Products Line. Retrieved from http://www.resindion.com Suche in Google Scholar

[28] Terreni, M., Ubiali, D., Bavaro, T., Pregnolato, M., Fernández-Lafuente, R., & Guisán, J. M. (2007). Enzymatic synthesis of cephalosporins. The immobilized acylase from Arthrobacter viscosus: A new useful biocatalysts. Applied Microbiology and Biotechnology, 77, 579–587. DOI: 10.1007/s00253-007-1186-3. http://dx.doi.org/10.1007/s00253-007-1186-310.1007/s00253-007-1186-3Suche in Google Scholar

[29] Torres-Guzmán, R., de la Mata, I., Torres-Bacete, J., Arroyo, M., Castillón, M. P., & Acebal, C. (2002). Substrate specificity of penicillin acylase from Streptomyces lavendulae. Biochemical and Biophysical Research Communications, 291, 593–597. DOI: 10.1006/bbrc.2002.6485. http://dx.doi.org/10.1006/bbrc.2002.648510.1006/bbrc.2002.6485Suche in Google Scholar

[30] van Langen, L. M., Janssen, M. H. A., Oosthoek, N. H. P., Pereira, S. R. M., Svedas, V. K., van Rantwijk, F., & Sheldon, R. A. (2002). Active site titration as a tool for the evaluation of immobilization procedures of penicillin acylase. Biotechnology and Bioengineering, 79, 224–228. DOI: 10.1002/bit.10280. http://dx.doi.org/10.1002/bit.1028010.1002/bit.10280Suche in Google Scholar

[31] Villalonga, R., Villalonga, M. L., & Gómez, L. (2000). Preparation and functional properties of trypsin modified by carboxymethylcellulose. Journal of Molecular Catalysis B: Enzymatic, 10, 483–490. DOI: 10.1016/S1381-1177(00)00003-5. http://dx.doi.org/10.1016/S1381-1177(00)00003-510.1016/S1381-1177(00)00003-5Suche in Google Scholar

[32] Zuza, M. G., Šiler-Marinković, S. S., & Knezević, Z. D. (2007). Preparation and characterization of penicillin acylase immobilized on Sepabeads EC-EP carrier. Chemical Industry & Chemical Engineering Quarterly, 13, 205–210. http://dx.doi.org/10.2298/CICEQ0704205Z10.2298/CICEQ0704205ZSuche in Google Scholar

Published Online: 2009-2-11
Published in Print: 2009-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
  2. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
  3. Immobilization of modified penicillin G acylase on Sepabeads carriers
  4. Granulation of activated sludge in a laboratory upflow sludge blanket reactor
  5. Investigation of the effect of fluid elasticity on a cake filtration process
  6. Lab-scale testing of a low-loaded activated sludge process with membrane filtration
  7. Calcium sulphate scaling in membrane distillation process
  8. Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
  9. Informational analysis of the grinding process of granular material using a multi-ribbon blender
  10. Effects of vessel baffling on the drawdown of floating solids
  11. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
  12. Intelligent control of a pH process
  13. Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
  14. A three-phase nonequilibrium model for catalytic distillation
  15. Membrane processes used for separation of effluents from wire productions
  16. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
  17. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
  18. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
  19. Oxidation of thiophene over copper-manganese mixed oxides
  20. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
  21. Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0012-z/pdf?lang=de
Button zum nach oben scrollen