Startseite Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure

  • Tiberiu Frentiu EMAIL logo , Michaela Ponta , Erika Levei und Emil Cordos
Veröffentlicht/Copyright: 11. Februar 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The modified four-step BCR sequential extraction procedure (exchangeable and weak acid available species, reducible, oxidisable and residual fractions) was used to examine the distribution of As, Cd, Cr, Cu, Pb, and Zn with soil depth in an area (Baia Mare — Bozanta, Romania) with both high natural level of elements considered as toxic and historical pollution resulting from nonferrous metallurgy. The BCR approach proved a high metal input of anthropogenic origin down to 40 cm, while at lower depths the naturally elevated metal content must be considered. Results of the partitioning study and XRD analysis of solid matrix showed the greatest potential for chemical remobilisation of Cd, Zn, and Cu in weak acidic medium as well as their affinity for the oxidisable fraction (organic matter/sulphide). The tendency of Cr, Pb, and As to be immobilised as residual or reducible species on Fe-Mn oxides was evident. Although the partitioning of As in chemically inactive forms such as scorodite (FeAsO4 · 2H2O) soluble under reducible conditions and beudantite (PbFe3(AsO4)(SO4)(OH)2)), a residual species soluble in acid media, chemical mobilisation from soil in groundwater was confirmed. Dynamic processes of metal retention in soil under different conditions, namely acidic, reducing or oxidisable, were predicted from the Pearsonșs correlation analysis of element species with soil characteristics and components such as Fe, Mn, organic matter content, pH, and total element content, respectively. At the moment of the study, soil and groundwater in the area were found to be polluted with As, Cd, Cu, Pb and Zn.

[1] Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., & Barberis, R. (2006). Assessment of metal availability in contaminated soil by sequential extraction. Water, Air and Soil Pollution, 137, 315–338. DOI: 10.1007/s11270-005-9006-9. http://dx.doi.org/10.1007/s11270-005-9006-910.1007/s11270-005-9006-9Suche in Google Scholar

[2] Alloway, B. J. (1995). Soil processes and the behaviour of heavy metals. In B. J. Alloway (Ed.), Heavy metals in soil (pp. 11–37). London: Blackie Academic and Professional. 10.1007/978-94-011-1344-1Suche in Google Scholar

[3] Bayley, T. C., Barcellos, C., & Krzamowski, W. J. (2005). Use of spatial factors in the analysis of heavy metals in sediments in a Brazilian coastal region. Environmetrics, 16, 563–572. DOI: 10.1002/env.708. http://dx.doi.org/10.1002/env.70810.1002/env.708Suche in Google Scholar

[4] Bird, G., Brewer, P. A., Macklin, M. G., Balteanu, D., Driga, B., Serban, M., & Zaharia, S. (2003). The solid state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Applied Geochemistry, 18, 1583–1595. DOI: 10.1016/S0883-2927(03)00078-7. http://dx.doi.org/10.1016/S0883-2927(03)00078-710.1016/S0883-2927(03)00078-7Suche in Google Scholar

[5] Boekhold, A. E., Temminghoff, E. J. M., & Van der Zee, S. E. A. M. (1993). Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. European Journal of Soil Science, 44, 85–96. DOI: 10.1111/j.1365-2389.1993.tb00436.x. http://dx.doi.org/10.1111/j.1365-2389.1993.tb00436.x10.1111/j.1365-2389.1993.tb00436.xSuche in Google Scholar

[6] Boughriet, A., Proix, N., Billon, G., Recourt, P., & Ouddane, B. (2007). Environmental impacts of heavy metal discharges from a smelter in Deile-canal Sediments (Northern France): Concentration levels and chemical fractionation. Water, Air and Soil Pollution, 180, 83–95. DOI: 10.1007/s11270-0069252-5. http://dx.doi.org/10.1007/s11270-006-9252-5Suche in Google Scholar

[7] Cordos, E. A., Frentiu, T., Rusu, A., & Vatca, G. (1995). Elemental speciation of lead, zinc and copper in sedimented dust and soil using a capacitively coupled plasma atomic emission spectrometer as detector. Analyst, 120, 725–735. DOI: 10.1039/AN9952000725. http://dx.doi.org/10.1039/an995200072510.1039/an9952000725Suche in Google Scholar

[8] Cordos, E., Rautiu, R., Roman, C., Ponta, M., Frentiu, T., Sarkany, A., Fodorpataki, L., Macalik, K., McCormick, C., & Weiss, D. (2003). Characterization of the river system in the mining and industrial area of Baia Mare, Romania. European Journal of Mineral Processing and Environmental Protection, 3, 324–335. Suche in Google Scholar

[9] Cordos, E., Frentiu, T., Ponta, M., Abraham, B., & Marginean, I. (2006). Distribution study of inorganic Arsenic (III) and (V) species in soil and their mobility in the area of Baia Mare, Romania. Chemical Speciation and Bioavailability, 18, 11–25. DOI: 10.3184/095422906782146294. http://dx.doi.org/10.3184/09542290678214629410.3184/095422906782146294Suche in Google Scholar

[10] Doelsch, E., Moussard, G., & Saint Macary, S. (2008). Fractionation of tropical soilborne heavy metals — Comparison of two sequential extraction procedures. Geoderma, 143, 168–179. DOI: 10.1016/j.geoderma.2007.10.027. http://dx.doi.org/10.1016/j.geoderma.2007.10.02710.1016/j.geoderma.2007.10.027Suche in Google Scholar

[11] Evans, L. J., Spiers, G. A., & Zhao, G. (1995). Chemical aspects of heavy metals solubility with reference to sewage sludge amended soils. International Journal of Environmental Analytical Chemistry, 59, 291–302. DOI: 10.1080/03067319508041335. http://dx.doi.org/10.1080/0306731950804133510.1080/03067319508041335Suche in Google Scholar

[12] Frentiu, T., Vlad, S. N., Ponta, M., Baciu, C., Kasler, I., & Cordos, E. A. (2007). Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta Mare. Chemical Papers, 61, 186–193. DOI: 10.2478/s11696-007-0018-3. http://dx.doi.org/10.2478/s11696-007-0018-310.2478/s11696-007-0018-3Suche in Google Scholar

[13] Frentiu, T., Ponta, M., Levei, E., Gheorghiu, E., Benea, M., & Cordos, E. (2008a). Preliminary study on heavy metals contamination of soil using solid phase speciation and the influence on groundwater in Bozanta — Baia Mare area, Romania. Chemical Speciation and Bioavailability, 20, 99–109. DOI: 10.3184/095422908X324471. http://dx.doi.org/10.3184/095422908X32447110.3184/095422908X324471Suche in Google Scholar

[14] Frentiu, T., Ponta, M., Levei, E., Gheorghiu, E., Kasler, I., & Cordos, E. A. (2008b). Validation of the Tessier scheme for speciation of metals in soil using the Bland and Altman test. Chemical Papers, 62, 114–122. DOI: 10.2478/s11696-007-0087-3. http://dx.doi.org/10.2478/s11696-007-0087-310.2478/s11696-007-0087-3Suche in Google Scholar

[15] Giancoli Barreto, S. R., Nozaki, J., De Oliveira, E., Do Nascimento Filho, V. F., Aragao, P. H. A., Scarminio, I. S., & Barreto, W. J. (2004). Comparison of metal analysis in sediments using EDXRF and ICP-OES with the HC land Tessier extraction methods. Talanta, 64, 345–354. DOI: 10.1016/j.talanta.2004.02.022. http://dx.doi.org/10.1016/j.talanta.2004.02.02210.1016/j.talanta.2004.02.022Suche in Google Scholar

[16] Golia, E. E., Tsiropoulos, N. G., Dimirkou, A., & Mitsios, I. (2007). Distribution of heavy metals of agricultural soils of central Greece using the modified BCR sequential extraction method. International Journal of Environmental Analytical Chemistry, 87, 1053–1063. DOI: 10.1080/03067310701451012. 10.1080/03067310701451012Suche in Google Scholar

[17] Herreweghe, S. V., Swennen, R., Vandecasteele, C., & Cappuyns, V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122, 323–342. DOI: 10.1016/S0269-7491(02)00332-9. http://dx.doi.org/10.1016/S0269-7491(02)00332-910.1016/S0269-7491(02)00332-9Suche in Google Scholar

[18] Kashem, M. A., Singh, B. R., Kondo, T., Imamul Huq, S. M., & Kawai, S. (2007). Comparison of extractability of Cd, Cu, Pb and Zn with sequential extraction in contaminated and noncontaminated soils. International Journal of Environmental Science and Technology, 4, 160–176. Suche in Google Scholar

[19] Kim, M. J., Ahn, K. H., & Jung, Y. (2002). Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere, 49, 307–312. DOI: 10.1016/S0045-6535(02)00307-7. http://dx.doi.org/10.1016/S0045-6535(02)00307-710.1016/S0045-6535(02)00307-7Suche in Google Scholar

[20] Kraft, C., von Tumpling, W., Jr., & Zachmann, D. W. (2006). The effects of mining in Northerh Romania on the heavy metal distribution in sediments on the rivers Szamos and Tisza (Hungary). Acta Hydrochimica et Hydrobiologica, 34, 257–264. DOI: 10.1002/aheh.200400622. http://dx.doi.org/10.1002/aheh.20040062210.1002/aheh.200400622Suche in Google Scholar

[21] Lindsay, W. L. (1979). Chemical equilibria in soils. New York: John Wiley and Sons. Suche in Google Scholar

[22] Macklin, M. G., Brewer, P. A., Balteanu, D., Coulthard, T. J., Driga, B., Howard, A. J., & Zaharia, S. (2003). The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failure in Maramures County, upper Tisa Basin, Romania. Applied Geochemistry, 18, 241–257. DOI: 10.1016/S0883-2927(02)00123-3. http://dx.doi.org/10.1016/S0883-2927(02)00123-310.1016/S0883-2927(02)00123-3Suche in Google Scholar

[23] McBride, M. B. (1980). Chemisorption of Cd2+ on calcite surfaces. Soil Science Society of America Journal, 44, 26–28. http://dx.doi.org/10.2136/sssaj1980.03615995004400010006x10.2136/sssaj1980.03615995004400010006xSuche in Google Scholar

[24] McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils. In Ground water issue EPA/540/S-92/018. Ada, Oklahoma: United States Environmental Protection Agency, Ground Water and Ecosystems Restoration Division. Suche in Google Scholar

[25] Mico, C., Recatala, L., Peris, M., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872. DOI: 10.1016/j.chemosphere.2006.03.016. http://dx.doi.org/10.1016/j.chemosphere.2006.03.01610.1016/j.chemosphere.2006.03.016Suche in Google Scholar PubMed

[26] Moore, D. (2006). The basic practice of statistics (4th ed., pp. 90–114). New York: W. H. Freeman. Suche in Google Scholar

[27] Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-aride zone. Journal of Geochemical Exploration, 96, 183–193. DOI: 10.1016/j.gexplo.2007.04.011. http://dx.doi.org/10.1016/j.gexplo.2007.04.01110.1016/j.gexplo.2007.04.011Suche in Google Scholar

[28] Pardo, R., Vega, M., Deban, L., Cazurro, C., & Carreto, C. (2008). Modelling of chemical fractionation patterns of metals in soils by two-way and three-way principal component analysis. Analytica Chimica Acta, 606, 26–36. DOI: 10.1016/j.aca.2007.11.004. http://dx.doi.org/10.1016/j.aca.2007.11.00410.1016/j.aca.2007.11.004Suche in Google Scholar PubMed

[29] Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soil. Environmental Pollution, 152, 330–341. DOI: 10.1016/j.envpol.2007.06.020. http://dx.doi.org/10.1016/j.envpol.2007.06.02010.1016/j.envpol.2007.06.020Suche in Google Scholar PubMed

[30] Quevauviller, P. (1998). Method performance studies for speciation analysis. Cambridge: The Royal Society of Chemistry. Suche in Google Scholar

[31] Rieuwerts, J. S., Ashmore, M. R., Farago, M. E., & Thornton, I. (2006). The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils. Science of the Total Environment, 366, 864–875. DOI: 10.1016/j.scitotenv.2005.08.023. http://dx.doi.org/10.1016/j.scitotenv.2005.08.02310.1016/j.scitotenv.2005.08.023Suche in Google Scholar PubMed

[32] Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10, 61–75. DOI: 10.3184/095422998782775835. http://dx.doi.org/10.3184/09542299878277583510.3184/095422998782775835Suche in Google Scholar

[33] Roman, C., Cordos, E., Ponta, M., Viman, V., & Vogt, A. (2005). Environmental monitoring in the Romanian Baia Mare mining region. In U. Ranft, B. Pesch, & A. Vogt (Eds.), Gold extraction in Central and Eastern Europe and the Commonwealth of Independent States: Health and environmental risks (p. 49). Cracow: Jagiellonian University Press. Suche in Google Scholar

[34] Schollenberger, C. J. (1945). Determination of soil organic matter. Soil Science, 59, 53–56. 10.1097/00010694-194501000-00008Suche in Google Scholar

[35] Singh, B. R., Narwal, R. P., Jeng, A. S., & Almas, A. (1995). Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels. Communications in Soil Science and Plant Analysis, 26, 2123–2142. http://dx.doi.org/10.1080/0010362950936943410.1080/00103629509369434Suche in Google Scholar

[36] Temminghoff, E. J. M., Van der Zee, S. E. A. M., & de Hann, F. A. M. (1997). Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environmental Science & Technology, 31, 1109–1115. DOI: 10.1021/es9606236. http://dx.doi.org/10.1021/es960623610.1021/es9606236Suche in Google Scholar

[37] Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. DOI: 10.1021/ac50043a017. http://dx.doi.org/10.1021/ac50043a01710.1021/ac50043a017Suche in Google Scholar

[38] Tokalioglu, S., & Kartal, S. (2003). Relationship between vegetable metal and soil-extractable metal contents by the BCR sequential extraction procedure: chemometrical interpretation of the data. International Journal of Environmental Analytical Chemistry, 83, 935–952. DOI: 10.1080/03067310310 001608740. http://dx.doi.org/10.1080/0306731031000160874010.1080/03067310310001608740Suche in Google Scholar

[39] U.S. Environmental Protection Agency. (1986). Test methods for evaluating solid wastes: physical/chemical methods. SW-846. Washington, D.C.: USEPA, Office of Solid Waste and Emergency Response. Suche in Google Scholar

[40] Vega, F. A., Covelo, E. F., & Andrade, M. L. (2006). Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics. Journal of Colloid and Interface Science, 298, 582–592. DOI: 10.1016/j.jcis.2006.01.012. http://dx.doi.org/10.1016/j.jcis.2006.01.01210.1016/j.jcis.2006.01.012Suche in Google Scholar PubMed

Published Online: 2009-2-11
Published in Print: 2009-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
  2. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
  3. Immobilization of modified penicillin G acylase on Sepabeads carriers
  4. Granulation of activated sludge in a laboratory upflow sludge blanket reactor
  5. Investigation of the effect of fluid elasticity on a cake filtration process
  6. Lab-scale testing of a low-loaded activated sludge process with membrane filtration
  7. Calcium sulphate scaling in membrane distillation process
  8. Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
  9. Informational analysis of the grinding process of granular material using a multi-ribbon blender
  10. Effects of vessel baffling on the drawdown of floating solids
  11. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
  12. Intelligent control of a pH process
  13. Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
  14. A three-phase nonequilibrium model for catalytic distillation
  15. Membrane processes used for separation of effluents from wire productions
  16. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
  17. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
  18. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
  19. Oxidation of thiophene over copper-manganese mixed oxides
  20. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
  21. Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0102-3/html
Button zum nach oben scrollen