Startseite Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide

  • Peter Ševčík EMAIL logo , Gabriel Čík , Tomáš Vlna und Tomáš Mackul’ak
Veröffentlicht/Copyright: 11. Februar 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The use of photocatalysts supported on adsorbents is receiving substantial attention. Supporting TiO2 with zeolites is found to be one of the best solutions to increase the efficiency of TiO2-based photocatalysts. This work was focused on simple preparation of a TiO2/Na-ZSM-5 composite catalyst by the solid state dispersion (SSD) method and its modification with an organic photosensitizer — polythiophene (PT). Using the XRD diffractometry, structure of the new composite catalyst was proved. Beside this composite catalyst, mechanical mixtures of TiO2-based catalysts with Na-ZSM-5 zeolite were prepared. The efficiency of all five available photocatalysts (TiO2, TiO2-PT, mechanical mixture of TiO2 + Na-ZSM-5, mechanical mixture of TiO2-PT + Na-ZSM-5, and the modified SSD-PT composite) on photodegradation of 4-chlorophenol was compared. By measuring the formation of chloride ions and decreasing the 4-chlorophenol concentration at two different initial concentrations of 4-chlorophenol in the basic aqueous solution, the photoefficiency and adsorption properties of our photocatalysts were determined.

[1] Ai, Z., Yang, P., & Lu, X. (2005). Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. Journal of Hazardous Materials B, 124, 147–152. DOI: 10.1016/j.jhazmat.2005.04.027. http://dx.doi.org/10.1016/j.jhazmat.2005.04.02710.1016/j.jhazmat.2005.04.027Suche in Google Scholar

[2] Cassano, A. E., & Alfano, O. M. (2000). Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis Today, 58, 167–197. DOI: 10.1016/S0920-5861(00)00251-0. http://dx.doi.org/10.1016/S0920-5861(00)00251-010.1016/S0920-5861(00)00251-0Suche in Google Scholar

[3] Chatterjee, D., & Mahata, A. (2001)a. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system. Catalysis Communications, 2, 1–3. DOI: 10.1016/S1566-7367(00)00011-X. http://dx.doi.org/10.1016/S1566-7367(00)00011-X10.1016/S1566-7367(00)00011-XSuche in Google Scholar

[4] Chatterjee, D., & Mahata, A. (2001)b. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Applied Catalysis B: Environmental, 33, 119–125. DOI: 10.1016/S0926-3373(01)00170-9. http://dx.doi.org/10.1016/S0926-3373(01)00170-910.1016/S0926-3373(01)00170-9Suche in Google Scholar

[5] Chen, J., Eberlein, L., & Langford, C. H. (2002). Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite. Journal of Photochemistry and Photobiology A: Chemistry, 148, 183–189. DOI: 10.1016/S1010-6030(02)00041-2. http://dx.doi.org/10.1016/S1010-6030(02)00041-210.1016/S1010-6030(02)00041-2Suche in Google Scholar

[6] Cosa, G., Galletero, M. S., Fernández, L., Márquez, F., García, H., & Scaiano, J. C. (2002). Tuning the photocatalytic activity of titanium dioxide by encapsulation inside zeolites exemplified by the cases of thianthrene photooxygenation and horseradish peroxidase photodeactivation. New Journal of Chemistry, 26, 1448–1455. DOI: 10.1039/b201397e. http://dx.doi.org/10.1039/b201397e10.1039/B201397ESuche in Google Scholar

[7] Čík, G., Hubinová, M., Šeršen, F., Krištín, J., & Antošová, M. (2003). Photocatalytic degradation of 4-chlorophenol by · OH radicals generated by thiophene oligomers incorporated in ZSM-5 zeolite channels. Collection of Czechoslovak Chemical Communications, 68, 2219–2230. DOI: 10.1135/cccc20032219. http://dx.doi.org/10.1135/cccc2003221910.1135/cccc20032219Suche in Google Scholar

[8] Čík, G., Priesolová, S., Bujdáková, H., Šeršen, F., Petheöová, T., & Krištín, J. (2006). Inactivation of bacteria G+-S. aureus and G−-E. coli by phototoxic polythiophene incorporated in ZSM-5 zeolite. Chemosphere, 63, 1419–1426. DOI: 10.1016/j.chemosphere.2005.10.017. http://dx.doi.org/10.1016/j.chemosphere.2005.10.01710.1016/j.chemosphere.2005.10.017Suche in Google Scholar PubMed

[9] Čík, G., Šeršeň, F., & Bumbálová, A. (1999). Photoassisted production of O 2−· and H2 in aqueous medium stimulated by polythiophene in ZSM-5 zeolite channels. Collection of Czechoslovak Chemical Communications, 64, 149–156. DOI: 10.1135/cccc19990149. http://dx.doi.org/10.1135/cccc1999014910.1135/cccc19990149Suche in Google Scholar

[10] Czaplicka, M. (2006). Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials B, 134, 45–59. DOI: 10.1016/j.jhazmat.2005.10.039. http://dx.doi.org/10.1016/j.jhazmat.2005.10.03910.1016/j.jhazmat.2005.10.039Suche in Google Scholar PubMed

[11] Downum, K. R. (1992). Tansley Review No. 43: Lightactivated plant defence. New Phytologist, 122, 401–420. DOI: 10.1111/j.1469-8137.1992.tb00068.x. http://dx.doi.org/10.1111/j.1469-8137.1992.tb00068.x10.1111/j.1469-8137.1992.tb00068.xSuche in Google Scholar

[12] Durgakumari, V., Subrahmanyam, M., Subba Rao, K. V., Ratnamala, A., Noorjahan, M., & Tanaka, K. (2002). An easy and efficient use of TiO2 supported HZSM-5 and TiO2 + HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Applied Catalysis A: General, 234, 155–165. DOI: 10.1016/S0926-860X(02)00224-7. http://dx.doi.org/10.1016/S0926-860X(02)00224-710.1016/S0926-860X(02)00224-7Suche in Google Scholar

[13] Fernandes Machado, N. R. C., & Santana, V. S. (2005). Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25. Catalysis Today, 107–108, 595–601. DOI: 10.1016/j.cattod.2005.07.022. http://dx.doi.org/10.1016/j.cattod.2005.07.02210.1016/j.cattod.2005.07.022Suche in Google Scholar

[14] Hashimoto, K., & Toukai, N. (2003). Removal of NOx with cobalt phthalocyanine supported on Y-type faujasite and alumina. Journal of Molecular Catalysis A: Chemical, 195, 275–282. DOI: 10.1016/S1381-1169(02)00585-X. http://dx.doi.org/10.1016/S1381-1169(02)00585-X10.1016/S1381-1169(02)00585-XSuche in Google Scholar

[15] Hügül, M., Boz, I., & Apak, R. (1999). Photocatalytic decomposition of 4-chlorophenol over oxide catalysts. Journal of Hazardous Materials B, 64, 313–322. DOI: 10.1016/S0304-3894(98)00272-6. http://dx.doi.org/10.1016/S0304-3894(98)00272-610.1016/S0304-3894(98)00272-6Suche in Google Scholar

[16] Iliev, V. (2002). Phthalocyanine-modified titania-catalyst for photooxidation of phenols by irradiation with visible light. Journal of Photochemistry and Photobiology A: Chemistry, 151, 195–199. DOI: 10.1016/S1010-6030(02)00177-6. http://dx.doi.org/10.1016/S1010-6030(02)00177-610.1016/S1010-6030(02)00177-6Suche in Google Scholar

[17] Legrini, O., Oliveros, E., & Braun, A. M. (1993) Photochemical processes for water treatment. Chemical Reviews, 93, 671–698. DOI: 10.1021/cr00018a003. http://dx.doi.org/10.1021/cr00018a00310.1021/cr00018a003Suche in Google Scholar

[18] Mohamed, R. M., Ismail, A. A., Othman, I., & Ibrahim, I. A. (2005). Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA. Journal of Molecular Catalysis A: Chemical, 238, 151–157. DOI: 10.1016/j.molcata.2005.05.023. http://dx.doi.org/10.1016/j.molcata.2005.05.02310.1016/j.molcata.2005.05.023Suche in Google Scholar

[19] Shankar, M. V., Cheralathan, K. K., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2004). Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO2/Hβ. Journal of Molecular Catalysis A: Chemical, 223, 195–200. DOI: 10.1016/j.molcata.2004.03.059. http://dx.doi.org/10.1016/j.molcata.2004.03.05910.1016/j.molcata.2004.03.059Suche in Google Scholar

[20] Ševčík, P., Čík, G., Krištín, J., & Šeršeň, F. (2007). Photochemical dechlorination of 4-chlorophenol in immersion photoreactor. In Proceedings of the 34th International Conference of Slovak Society of Chemical Engineering, May 21–25, 2007. Tatranské Matliare: Slovak Society of Chemical Engineering. Suche in Google Scholar

[21] Takeuchi, M., Kimura, T., Hidaka, M., Rakhmawaty, D., & Anpo, M. (2007). Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites. Journal of Catalysis, 246, 235–240. DOI: 10.1016/j.jcat.2006.12.010. http://dx.doi.org/10.1016/j.jcat.2006.12.01010.1016/j.jcat.2006.12.010Suche in Google Scholar

[22] Vaisman, E., Cook, R. L., & Langford, C. H. (2000). Characterization of a composite photocatalyst. Journal of Physical Chemistry B, 104, 8679–8684. DOI: 10.1021/jp000473s. http://dx.doi.org/10.1021/jp000473s10.1021/jp000473sSuche in Google Scholar

[23] Yahiro, H., Miyamoto, T., Watanabe, N., & Yamaura, H. (2007). Photocatalytic partial oxidation of α-methylstyrene over TiO2 supported on zeolites. Catalysis Today, 120, 158–162. DOI: 10.1016/j.cattod.2006.07.039. http://dx.doi.org/10.1016/j.cattod.2006.07.03910.1016/j.cattod.2006.07.039Suche in Google Scholar

[24] Yamashita, H., Fujii, Y., Ichihashi, Y., Zhang, S. G., Ikeue, K., Park, D. R., Koyano, K., Tatsumi, T., & Anpo, M. (1998). Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today, 45, 221–227. DOI: 10.1016/S0920-5861(98)00219-3. http://dx.doi.org/10.1016/S0920-5861(98)00219-310.1016/S0920-5861(98)00219-3Suche in Google Scholar

[25] Yao, S., Dou, D., Fu, H., Liu, S., Wang, S., & Sun, X. (2005). Innovation technique of radiation for the treatment of 4-chlorophenol as a model of POPs in waste water. Nuclear Instruments and Methods in Physics Research B, 236, 266–271. DOI: 10.1016/j.nimb.2005.03.249. http://dx.doi.org/10.1016/j.nimb.2005.03.24910.1016/j.nimb.2005.03.249Suche in Google Scholar

[26] Zhang, S. C., Kobayashi, T., Nosaka, Y., & Fujii, N. (1996). Photocatalytic property of titanium silicate zeolite. Journal of Molecular Catalysis A: Chemical, 106, 119–123. DOI: 10.1016/1381-1169(95)00263-4. http://dx.doi.org/10.1016/1381-1169(95)00263-410.1016/1381-1169(95)00263-4Suche in Google Scholar

[27] Zhang, S. C., Fujii, N., & Nosaka, Y. (1998). The dispersion effect of TiO2 loaded over ZSM-5 zeolite. Journal of Molecular Catalysis A: Chemical, 129, 219–224. DOI: 10.1016/S1381-1169(97)00142-8. http://dx.doi.org/10.1016/S1381-1169(97)00142-810.1016/S1381-1169(97)00142-8Suche in Google Scholar

Published Online: 2009-2-11
Published in Print: 2009-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
  2. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
  3. Immobilization of modified penicillin G acylase on Sepabeads carriers
  4. Granulation of activated sludge in a laboratory upflow sludge blanket reactor
  5. Investigation of the effect of fluid elasticity on a cake filtration process
  6. Lab-scale testing of a low-loaded activated sludge process with membrane filtration
  7. Calcium sulphate scaling in membrane distillation process
  8. Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
  9. Informational analysis of the grinding process of granular material using a multi-ribbon blender
  10. Effects of vessel baffling on the drawdown of floating solids
  11. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
  12. Intelligent control of a pH process
  13. Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
  14. A three-phase nonequilibrium model for catalytic distillation
  15. Membrane processes used for separation of effluents from wire productions
  16. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
  17. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
  18. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
  19. Oxidation of thiophene over copper-manganese mixed oxides
  20. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
  21. Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0101-4/html
Button zum nach oben scrollen