Startseite Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Formation of hydrated titanium dioxide from seeded titanyl sulphate solution

  • Barbara Grzmil EMAIL logo , Daniel Grela und Bogumił Kic
Veröffentlicht/Copyright: 11. Februar 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper analyses the influence of various kinds and amounts of titanium dioxide nuclei addition to a solution of titanyl sulphate on the conversion degree of TiOSO4 to hydrated titanium dioxide and sulphuric acid. An industrial solution of titanyl sulphate used to produce titanium white was used in the present investigations. It was found that the course of hydrolysis clearly depended on the investigated parameters. The anatase nuclei calcined at 373 K and 333 K and rutile nuclei increased the degree of titanyl sulphate hydrolysis as compared to non-nucleation hydrolysis. The final degree of hydrolysis was by 1–2 % higher than that achieved without any nuclei addition. The constant rates of both colloidal intermediate and final crystalline products formation were higher in the hydrolysis process with both anatase nuclei after heat treatment at lower temperature and rutile nuclei in comparison to the same processes conducted in the absence of these nuclei.

[1] Adams, R. W., Moor, D. E., & Taylor, R. K. A. (1997). TiO 2 pigment: a dynamic global industry. Beckenham, England: Artikol. Suche in Google Scholar

[2] Bavykin, D. V., Dubovitskaya, V. P., Vorontsov, A. V., & Parmon, V. N. (2007). Effect of TiOSO4 hydrotermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity. Research on Chemical Intermediates, 33, 449–464. DOI: 10.1163/156856707779238702. http://dx.doi.org/10.1163/15685670777923870210.1163/156856707779238702Suche in Google Scholar

[3] Bavykin, D. V., Savinov, E. N., & Smirniotis, P. G. (2003). Kinetics of the TiO2 films growth at the hydrothermal hydrolysis of TiOSO4. Reaction Kinetics and Catalysis Letters, 79, 77–84. DOI: 10.1023/A:1024107701071. http://dx.doi.org/10.1023/A:102410770107110.1023/A:1024107701071Suche in Google Scholar

[4] Blumenfeld, J. (1932). U.S. Patent No. 1,851,487. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[5] Chung, F. H., & Smith, D. K. (2000). Industrial application of X-ray diffraction. New York-Basel: Marcel Dekker, Inc. Suche in Google Scholar

[6] Cody, C. A., Reichert, W. W., Kemmetz, S. J., & Magauran, E. D. (1985). U.S. Patent No. 4,505,886. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[7] Dąbrowski, W., Tymejczyk, A., & Lubkowska, A. (2001). Properties and application of titanium dioxide pigments. Police: Chemical Works “Police” S.A. Suche in Google Scholar

[8] Dobrovolskii, I. P. (1988). Khimia i tekhnologia oksidnyh sojedinenii titana (The chemistry and technology of the oxide compounds of titanium). Sverdlovsk: UrO AN SSSR. Suche in Google Scholar

[9] Fogler, H. S. (2006). Elements of chemical reaction engineering. Upper Saddle River: Pearson Education International. Suche in Google Scholar

[10] Foulger, D. L., Nencini, P., & Pieri, S. (1997). U.S. Patent No. 5,630,995. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[11] Grzmil, B., Grela, D., & Kic, B. (2006). Studies on the hydrolysis process of titanium sulfate compound. Polish Journal of Chemical Technology, 8(3), 19–21. Suche in Google Scholar

[12] Grzmil, B., Grela, D., & Kic, B. (2008). Hydrolysis of titanium sulphate compounds. Chemical Papers, 62, 18–25. DOI: 10.2478/s1696-007-0074-8. http://dx.doi.org/10.2478/s11696-007-0074-8Suche in Google Scholar

[13] Gussman, N. (2005). Titanium dioxide: from black sand to white pigment. Chemical Engineering Progress, 101(5), 64–64. Suche in Google Scholar

[14] Hidalgo, M. C., & Bahnemann, D. (2005). Highly photoactive supported TiO2 prepared by thermal hydrolysis of TiOSO4: Optimisation of the method and comparison with other synthetic routes. Applied Catalysis B: Enviromental, 61, 259–266. DOI: 101016/j.apeatb.2005.06.004. http://dx.doi.org/10.1016/j.apcatb.2005.06.00410.1016/j.apcatb.2005.06.004Suche in Google Scholar

[15] Holbein, R. G., (1965). U.S. Patent No. 3,169,074. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[16] Juho-Pertti, J. (1992). Precipitation and properties of TiO2 pigments in the sulfate process 1. Preparation of the liquor and effects of iron(II) in isoviscous liquor, Industrial & Engineering Chemistry Research, 31, 608–611. DOI: 10.1021/ie00002a024. http://dx.doi.org/10.1021/ie00002a02410.1021/ie00002a024Suche in Google Scholar

[17] Lawes, G., & Jame, A. M. (1987). Scanning electron microscopy and X-ray microanalysis. Chichester: John Wiley & Sons Ltd. Suche in Google Scholar

[18] Little, W. T., & Westfield, N. J. (1936). U.S. Patent No. 2,029,881. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[19] Mecklenburg, W. (1930). U.S. Patent No. 1,758,528. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[20] Minczewski, J., & Marczenko, Z. (2004). Chemia analityczna. Warsaw: PWN. Suche in Google Scholar

[21] Mirsky, Y. M., & Gorlova, M. N. (2005). U.S. Patent No. 6,956,006. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[22] Mitsch, F. J., & Kennedy, B. J. (1999). Titanium dioxide. US Chemicals-Major, 5, 35. Suche in Google Scholar

[23] Montino, F., & Spoto, G. (1988). EP Patent No. 0,260,664. European Patent Office. Suche in Google Scholar

[24] Okey, J. N., Davidson, P. J., & Brook, R. J. (1996). GB Patent No. 2,291,052. Newport, U.K.: UK Intellectual Property Office. Suche in Google Scholar

[25] Sathyamoorthy, S., Moggridge, G. D., & Hounslow, M. J. (2001). Particle formation during anatase precipitation of seeded titanyl sulfate solution. Crystal Growth and Design, 1, 123–129. DOI: 10.1021/cg0000013. http://dx.doi.org/10.1021/cg000001310.1021/cg0000013Suche in Google Scholar

[26] Tanner, C. A., & Collingswood, N. J. (1950). U.S. Patent No. 2,516,604. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[27] Twist, W., Lawrence, L. J., & Cordey, T. L. (1970). U.S. Patent No. 3,501,271. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[28] Wiederhöft, G., Bayer, E., Müller, W. D., & Lailach, G. (1991). U.S. Patent No. 4,988,495. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[29] Wigginton, R. J. (1962). U.S. Patent No. 3,062,673. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[30] Winkler, J. (2003). Titanium dioxide. Hannover: Vincentz Network. Suche in Google Scholar

[31] Yu, J., Guo, H., Davis, S. A., & Mann, S. (2006). Fabrication of hollow inorganic microspheres by chemically induced selftransformation. Advanced Functional Materials, 16, 2035–2041. DOI: 10.1002/adfm.200600552. http://dx.doi.org/10.1002/adfm.20060055210.1002/adfm.200600552Suche in Google Scholar

[32] Yu, J., Liu, S., & Yu, H. (2007). Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. Journal of Catalysis, 249, 59–66. DOI: 10.1016/j.jcat.2007.03.032. http://dx.doi.org/10.1016/j.jcat.2007.03.03210.1016/j.jcat.2007.03.032Suche in Google Scholar

Published Online: 2009-2-11
Published in Print: 2009-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
  2. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
  3. Immobilization of modified penicillin G acylase on Sepabeads carriers
  4. Granulation of activated sludge in a laboratory upflow sludge blanket reactor
  5. Investigation of the effect of fluid elasticity on a cake filtration process
  6. Lab-scale testing of a low-loaded activated sludge process with membrane filtration
  7. Calcium sulphate scaling in membrane distillation process
  8. Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
  9. Informational analysis of the grinding process of granular material using a multi-ribbon blender
  10. Effects of vessel baffling on the drawdown of floating solids
  11. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
  12. Intelligent control of a pH process
  13. Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
  14. A three-phase nonequilibrium model for catalytic distillation
  15. Membrane processes used for separation of effluents from wire productions
  16. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
  17. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
  18. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
  19. Oxidation of thiophene over copper-manganese mixed oxides
  20. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
  21. Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0009-7/pdf?lang=de
Button zum nach oben scrollen