Startseite Intelligent control of a pH process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Intelligent control of a pH process

  • Alois Mészáros EMAIL logo , L’uboš Čirka und L’ubomír Šperka
Veröffentlicht/Copyright: 11. Februar 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new strategy, to augment the pH process control is offered in this paper. The intelligent controller proposed herein is based on an inverse neural plant model. An integration term is introduced to improve the pure inverse neural controller performance. This element, adjusted by a fuzzy system with respect to the control error, operates in parallel with the neural controller to ensure offset-free performance, in case of system uncertainties or modelling mismatch. Four fuzzy rules were applied to generate the integrator parameters. Experimental results, carried out under pH control on a laboratory scale set-up, demonstrate the feasibility of the proposed control system.

[1] Altinten, A. (2007). Generalized predictive control applied to a pH neutralization process. Computers & Chemical Engineering, 31, 1199–1204. DOI: 10.1016/j.compchemeng.2006.10.005. http://dx.doi.org/10.1016/j.compchemeng.2006.10.00510.1016/j.compchemeng.2006.10.005Suche in Google Scholar

[2] Andrášik, A., Mészáros, A., & de Azevedo, S. F. (2004). On-line tuning of a neural PID controller based on hybrid modeling. Computers & Chemical Engineering, 28, 1499–1509. DOI: 10.1016/j.compchemeng.2003.12.002. http://dx.doi.org/10.1016/j.compchemeng.2003.12.00210.1016/j.compchemeng.2003.12.002Suche in Google Scholar

[3] Bhat, M., & McAvoy, T. J. (1990). Use of neural nets for dynamic modelling and control of chemical process systems. Computers & Chemical Engineering, 14, 573–582. DOI: 10.1016/0098-1354(90)87028-N. http://dx.doi.org/10.1016/0098-1354(90)87028-N10.1016/0098-1354(90)87028-NSuche in Google Scholar

[4] Demuth, H., & Beale, M. (1994). Neural network toolbox for use with MATLAB. Natick, MA, USA: The MathWorks Inc. Suche in Google Scholar

[5] Duan, S., Shi, Z., Feng, H., Duan, Z., & Mao, Z. (2006). An on-line adaptive control based on DO/pH measurements and ANN pattern recognition model for fed-batch cultivation. Biochemical Engineering Journal, 30, 88–96. DOI: 10.1016/j.bej.2006.02.007. http://dx.doi.org/10.1016/j.bej.2006.02.00710.1016/j.bej.2006.02.007Suche in Google Scholar

[6] Fuente, M. J., Robles, C., Casado, O., Syafiie, S., & Tadeo, F. (2006). Fuzzy control of a neutralization process. Engineering Applications of Artificial Intelligence, 19, 905–914. DOI: 10.1016/j.engappai.2006.01.008. http://dx.doi.org/10.1016/j.engappai.2006.01.00810.1016/j.engappai.2006.01.008Suche in Google Scholar

[7] Gustafsson, T. K., & Waller, K. V. (1983). Dynamic modelling and reaction invariant control of pH. Chemical Engineering Science, 38, 389–398. DOI: 10.1016/0009-2509(83)80157-2. http://dx.doi.org/10.1016/0009-2509(83)80157-210.1016/0009-2509(83)80157-2Suche in Google Scholar

[8] Gustafsson, T. K., & Waller, K. V. (1992). Nonlinear and adaptive control of pH. Industrial & Engineering Chemistry Research, 31, 2681–2693. DOI: 10.1021/ie00012a009. http://dx.doi.org/10.1021/ie00012a00910.1021/ie00012a009Suche in Google Scholar

[9] Loh, A. P., Looi, K. O., & Fong, K. F. (1995). Neural network modeling and control strategies for a pH process. Journal of Process Control, 5, 355–362. DOI: 10.1016/0959-1524(95)00005-B. http://dx.doi.org/10.1016/0959-1524(95)00005-B10.1016/0959-1524(95)00005-BSuche in Google Scholar

[10] McAvoy, T. J., Hsu, E., & Lowenthal, S. (1972). Dynamics of pH in a controlled stirred tank reactor. Industrial & Engineering Chemistry Process Design and Development, 11, 68–70. DOI: 10.1021/i260041a013. http://dx.doi.org/10.1021/i260041a01310.1021/i260041a013Suche in Google Scholar

[11] Mészáros, A., Rusnák, A., & Najim, K. (1997). Intelligent control of continuous bioprocess using neural network models. Chemical and Biochemical Engineering Quarterly, 11, 81–88. Suche in Google Scholar

[12] Mészáros, A., Andrášik, A., & Šperka, L’. (2002). Influence of the adaptation gain on robust neural control. In Proceed ings of 5th International Scientific - Technical Conference on Process Control, 9–12 June 2002 (pp. R241a1–R241a6). Pardubice, Czech Republic: University of Pardubice. Suche in Google Scholar

[13] Mészáros, A., Andrášik, A., Mizsey, P., Fonyó, Z., & Illeová, V. (2004). Computer control of a laboratory fermenter using neural network technique. Bioprocess and Biosystems Engineering, 26, 331–340. DOI: 10.1007/s00449-004-0374-0. http://dx.doi.org/10.1007/s00449-004-0374-010.1007/s00449-004-0374-0Suche in Google Scholar PubMed

[14] Narayanan, N. R. L., Krishnaswamy, P. R., & Rangaiah, G. P. (1997). An adaptive internal model control strategy for pH neutralization. Chemical Engineering Science, 52, 3067–3074. DOI: 10.1016/S0009-2509(97)00130-9. http://dx.doi.org/10.1016/S0009-2509(97)00130-910.1016/S0009-2509(97)00130-9Suche in Google Scholar

[15] Ramasamy, S., Desphande, P. B., Tambe, S. S., & Kulnakarni, B. D. (1995). Robust nonlinear control with neural networks. Proceedings A of the Royal Society of London, 449, 655–667. http://dx.doi.org/10.1098/rspa.1995.006410.1098/rspa.1995.0064Suche in Google Scholar

[16] Sung, S. W., Lee, I.-B., Choi, J. Y., & Lee, J. (1998). Adaptive control for pH systems. Chemical Engineering Science, 53, 1941–1953. DOI: 10.1016/S0009-2509(98)00050-5. http://dx.doi.org/10.1016/S0009-2509(98)00050-510.1016/S0009-2509(98)00050-5Suche in Google Scholar

[17] Šperka, L., & Mészáros, A. (2004). Fuzzy tuning of PID-like inverse neural controller. In Proceedings of 6th International Scientific - Technical Conference on Process Control, 8–11 June 2004 (pp. R157-1–R157-9). Pardubice: University of Pardubice. Suche in Google Scholar

[18] Wright, R. A., & Kravaris, C. (1991). Nonlinear control of pH processes using the strong acid equivalent. Industrial & Engineering Chemistry Research, 30, 1561–1572. DOI: 10.1021/ie00055a022. http://dx.doi.org/10.1021/ie00055a02210.1021/ie00055a022Suche in Google Scholar

[19] Yeo, Y.-K., & Kwon, T.-I. (1999). A neural PID controller for the pH neutralization process. Industrial & Engineering Chemistry Research, 38, 978–987. DOI: 10.1021/ie9805133. http://dx.doi.org/10.1021/ie980513310.1021/ie9805133Suche in Google Scholar

Published Online: 2009-2-11
Published in Print: 2009-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
  2. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
  3. Immobilization of modified penicillin G acylase on Sepabeads carriers
  4. Granulation of activated sludge in a laboratory upflow sludge blanket reactor
  5. Investigation of the effect of fluid elasticity on a cake filtration process
  6. Lab-scale testing of a low-loaded activated sludge process with membrane filtration
  7. Calcium sulphate scaling in membrane distillation process
  8. Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
  9. Informational analysis of the grinding process of granular material using a multi-ribbon blender
  10. Effects of vessel baffling on the drawdown of floating solids
  11. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
  12. Intelligent control of a pH process
  13. Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
  14. A three-phase nonequilibrium model for catalytic distillation
  15. Membrane processes used for separation of effluents from wire productions
  16. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
  17. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
  18. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
  19. Oxidation of thiophene over copper-manganese mixed oxides
  20. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
  21. Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0005-y/html
Button zum nach oben scrollen