Abstract
Commercial hopcalite calcined at different temperatures and hopcalite modified with noble metals (Pt, Pd, and Au) were studied in oxidation of thiophene. Surface and bulk properties of catalysts were studied using temperature-programmed reduction (TPRH2), X-ray diffraction method (XRD) and thermal analysis (TG-DTA-MS). It was shown that calcined samples displayed higher activity in comparison with commercial untreated hopcalite; however, a lower temperature of calcination was favourable. High temperature of thermal treatment induced an increase in the crystallinity and a decrease in the surface area of the samples, and, as a consequence, the loss of catalysts activity. Moreover, marked improvement in the catalytic performance of platinum and palladium modified catalysts in relation to base hopcalite was observed. The obtained results indicate that the higher activity of samples containing Pt and Pd was accompanied by better reducibility of the catalysts.
[1] Álvarez-Galván, M. C., Pawelec, B., De la Peña O’shea, V. A., Fierro, J. L. G., & Arias, P. L. (2004). Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst. Applied Catalysis B: Environmental, 51, 83–91. DOI: 10.1016/j.apcatb.2004.01.024. http://dx.doi.org/10.1016/j.apcatb.2004.01.02410.1016/j.apcatb.2004.01.024Suche in Google Scholar
[2] De la Peña O’shea, V. A., Alvarez-Galván, M. C., Fierro, J. L. G., & Arias, P. L. (2005). Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental, 57, 191–199. DOI: 10.1016/j.apcatb.2004.11.001. http://dx.doi.org/10.1016/j.apcatb.2004.11.00110.1016/j.apcatb.2004.11.001Suche in Google Scholar
[3] Ferrandon, M., Carnö, J., Järås, S., & Björnbom, E. (1999). Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterization. Applied Catalysis A: General, 180, 141–151. DOI: 10.1016/S0926-860X(98)00326-3. http://dx.doi.org/10.1016/S0926-860X(98)00326-310.1016/S0926-860X(98)00326-3Suche in Google Scholar
[4] Ferrandon, M., & Björnbom, E. (2001). Hydrothermal stabilization by lanthanum of mixed metal oxides and noble metal catalysts for volatile organic compound removal. Journal of Catalysis, 200, 148–159. DOI: 10.1006/jcat.2001.3185. http://dx.doi.org/10.1006/jcat.2001.318510.1006/jcat.2001.3185Suche in Google Scholar
[5] Garetto, T. F., Rincón, E., & Apesteguía, C. R. (2004). Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Applied Catalysis B: Environmental, 48, 167–174. DOI: 10.1016/j.apcatb.2003.10.004. http://dx.doi.org/10.1016/j.apcatb.2003.10.00410.1016/j.apcatb.2003.10.004Suche in Google Scholar
[6] Gentry, S. J., Hurst, N. W., & Jones, A. (1981). Study of the promoting influence of transition metals on the reduction of cupric oxide by temperature programmed desorption. Journal of the Chemical Society, Faraday Transactions 1, 77, 603–619. DOI: 10.1039/F19817700603. 10.1039/f19817700603Suche in Google Scholar
[7] Heyes, J. C., Irwin, J. G., Johnson, H. A., & Moss, R. L. (1982). The catalytic oxidation of organic air pollutants, part 1. Single metal oxide catalysts. Journal of Chemical Technology & Biotechnology, 32, 1025–1033. DOI: 10.1002/jctb.5030320746. 10.1002/jctb.5030320746Suche in Google Scholar
[8] Hutchings, G. J., Mirzaei, A. A., Joyner, R. W., Siddiqui, M. R. H., & Taylor, S. H. (1998). Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General, 166, 143–152. DOI: 10.1016/S0926-860X(97)00248-2. http://dx.doi.org/10.1016/S0926-860X(97)00248-210.1016/S0926-860X(97)00248-2Suche in Google Scholar
[9] Kanungo, S. B. (1979). Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation. Journal of Catalysis, 58, 419–435. DOI: 10.1016/0021-9517(79)90280-X. http://dx.doi.org/10.1016/0021-9517(79)90280-X10.1016/0021-9517(79)90280-XSuche in Google Scholar
[10] Kim, S. (2002). The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. Journal of Hazardous Material B, 91, 285–299. DOI: 10.1016/S0304-3894(01)00396-X. http://dx.doi.org/10.1016/S0304-3894(01)00396-X10.1016/S0304-3894(01)00396-XSuche in Google Scholar
[11] Kośmider, J., Mazur-Chrzanowska, B., & Wyszyński, B. (2002). Odory, Warszaw, Poland: PWN. Suche in Google Scholar
[12] Le, P. D., Becker, P. D., Aarnink, A. J. A., Jonglbloed, A. W., & van der Peet-Schwering, C. M. C. (2004). Odour from pig production facilities: its relation to diet. Agrotechnology & Food Innovations Report 115. Wageningen, The Netherlands: Agrotechnology & Food Innovations B.V. Suche in Google Scholar
[13] Mirzaei, A. A., Shaterian, H. R., Habibi, M., Hutchings, G. J., & Taylor, S. H. (2003). Characterisation of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General, 253, 499–508. DOI: 10.1016/S0926-860X (03)00563-5. http://dx.doi.org/10.1016/S0926-860X(03)00563-510.1016/S0926-860X(03)00563-5Suche in Google Scholar
[14] Morales, M. R., Barbero, B. P., & Cadús, L. E. (2006). Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts. Applied Catalysis B: Environmental, 67, 229–236. DOI: 10.1016/j.apcatb.2006.05.006. http://dx.doi.org/10.1016/j.apcatb.2006.05.00610.1016/j.apcatb.2006.05.006Suche in Google Scholar
[15] O’Malley, A., & Hodnett, B. K. (1999). The influence of volatile organic compound structure on conditions required for total oxidation. Catalysis Today, 54, 31–38. DOI: 10.1016/S0920-5861(99)00166-2. http://dx.doi.org/10.1016/S0920-5861(99)00166-210.1016/S0920-5861(99)00166-2Suche in Google Scholar
[16] Park, J. S., Doh, D. S., & Lee, K.-Y. (2000). High catalytic activity of PdOx/MnO2 for CO oxidation and importance of oxidation state of Mn. Topic in Catalysis, 10, 127–131. DOI: 10.1023/A:1019124419791. http://dx.doi.org/10.1023/A:101912441979110.1023/A:1019124419791Suche in Google Scholar
[17] Rogowski, J., Szynkowska, M. I., Węglińska, A., Wojciechowska, E., & Paryjczak, T. (2008). Study of the surface properties of the hopcalite modified with noble metals. Polish Journal of Chemistry, 82, 2359–2366. Suche in Google Scholar
[18] Solsona, B., Hutchings, G. J., Garcia, T., & Taylor, S. T. (2004). Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry Articles, 28, 708–711. DOI: 10.1039/b315391f. 10.1039/b315391fSuche in Google Scholar
[19] Solsona, B. E., Garcia, T., Jones, C., Taylor, S. H., Carley, A. F., & Hutchings, G. J. (2006). Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A: General, 312, 67–76. DOI: 10.1016/j.apcata.2006.06.016. http://dx.doi.org/10.1016/j.apcata.2006.06.01610.1016/j.apcata.2006.06.016Suche in Google Scholar
[20] Tanaka, Y., Takeguchi, T., Kikuchi, R., & Eguchi, K. (2005). Influence of the preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Applied Catalysis A: General, 279, 59–66. DOI: 10.1016/j.apcata.2004.01.013. http://dx.doi.org/10.1016/j.apcata.2004.10.01310.1016/j.apcata.2004.01.013Suche in Google Scholar
[21] Vepřek, S., Cocke, D. L., Kehl, S., & Oswald, H. R. (1986). Mechanism of the deactivation of Hopcalite catalysts studied by XPS, ISS, and other techniques. Journal of Catalysis, 100, 250–263. DOI: 10.1016/0021-9517(86)90090-4. http://dx.doi.org/10.1016/0021-9517(86)90090-410.1016/0021-9517(86)90090-4Suche in Google Scholar
[22] Wang, C.-H., & Weng, H.-S. (1997). Al2O3-Supported mixedmetal oxides for destructive oxidation of (CH3)2S2. Industrial & Engineering Chemistry Research, 36, 2537–2542. DOI: 10.1021/ie960787v. http://dx.doi.org/10.1021/ie960787v10.1021/ie960787vSuche in Google Scholar
[23] Wang, C.-H., & Weng, H.-S. (1998). Promoting effect of molybdenum on CuO/γ-Al2O3 catalyst for the oxidative decomposition of (CH3)2S2. Applied Catalysis A: General, 170, 73–80. DOI: 10.1016/S0926-860X(98)00050-7. http://dx.doi.org/10.1016/S0926-860X(98)00050-710.1016/S0926-860X(98)00050-7Suche in Google Scholar
[24] Wang, C.-H., Lin, S.-S., Liou, S.-B., & Weng, H.-S. (2002). The promoter effect and a rate expression of the catalytic incineration of (CH3)2S2 over an improved CuO-MoO3/γ-Al2O3 catalyst. Chemosphere, 49, 389–194. DOI: 10.1016/S0045-6535(02)00273-4. http://dx.doi.org/10.1016/S0045-6535(02)00273-410.1016/S0045-6535(02)00273-4Suche in Google Scholar
[25] Wang, C.-H., Lin, S.-S., Chen, C.-L., & Weng, H.-S. (2006). Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere, 64, 503–509. DOI: 10.1016/j.chemosphere.2005.11.023. http://dx.doi.org/10.1016/j.chemosphere.2005.11.02310.1016/j.chemosphere.2005.11.023Suche in Google Scholar PubMed
[26] Zahn, J. A., DiSpirito, A. A., Do, Y. S., Brooks, B. E., Cooper, E. E., & Hatfield, J. L. (2001). Correlation of human olfactory responses to airborne concentrations of malodorous volatile organic compounds emitted from swine effluent. Journal of Environmental Quality, 30, 624–634. http://dx.doi.org/10.2134/jeq2001.302624x10.2134/jeq2001.302624xSuche in Google Scholar PubMed
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
- Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
- Immobilization of modified penicillin G acylase on Sepabeads carriers
- Granulation of activated sludge in a laboratory upflow sludge blanket reactor
- Investigation of the effect of fluid elasticity on a cake filtration process
- Lab-scale testing of a low-loaded activated sludge process with membrane filtration
- Calcium sulphate scaling in membrane distillation process
- Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
- Informational analysis of the grinding process of granular material using a multi-ribbon blender
- Effects of vessel baffling on the drawdown of floating solids
- N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
- Intelligent control of a pH process
- Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
- A three-phase nonequilibrium model for catalytic distillation
- Membrane processes used for separation of effluents from wire productions
- A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
- Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
- Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
- Oxidation of thiophene over copper-manganese mixed oxides
- Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
- Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Artikel in diesem Heft
- Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
- Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
- Immobilization of modified penicillin G acylase on Sepabeads carriers
- Granulation of activated sludge in a laboratory upflow sludge blanket reactor
- Investigation of the effect of fluid elasticity on a cake filtration process
- Lab-scale testing of a low-loaded activated sludge process with membrane filtration
- Calcium sulphate scaling in membrane distillation process
- Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
- Informational analysis of the grinding process of granular material using a multi-ribbon blender
- Effects of vessel baffling on the drawdown of floating solids
- N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
- Intelligent control of a pH process
- Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
- A three-phase nonequilibrium model for catalytic distillation
- Membrane processes used for separation of effluents from wire productions
- A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
- Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
- Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
- Oxidation of thiophene over copper-manganese mixed oxides
- Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
- Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide