Abstract
Methanol has recently attracted significant interest in the energetic field. Current technology for the conversion of methane to methanol is based on energy intensive endothermic steam reforming followed by catalytic conversion into methanol. The one-step method performed at very low temperatures (35°C) is methane oxidation to methanol via bacteria. The aim of this work was to examine the role of copper in the one-step methane oxidation to methanol by utilizing whole cells of Methylosinus trichosporium OB3b bacteria. From the results obtained it was found that copper concentration in the medium influences the rate of bacterial biomass growth or methanol production during the process of methane oxidation to methanol. The presented results indicate that the process of methane oxidation to methanol by Methylosinus trichosporium OB3b bacteria is most efficient when the mineral medium contains 1.0 × 10−6 mol dm−3 of copper. Under these conditions, a satisfactory growth of biomass was also achieved.
[1] Barta, T. M., & Hanson, R. S. (1993). Genetics of methane and methanol oxidation in Gram-negative methylotrophic bacteria. Antonie van Leeuwenhoek, 64, 109–120. DOI: 10.1007/BF00873021. http://dx.doi.org/10.1007/BF0087302110.1007/BF00873021Suche in Google Scholar
[2] Bender, M., & Conrad, R. (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology & Biochemistry, 27, 1517–1527. DOI: 10.1016/0038-0717(95)00104-M. http://dx.doi.org/10.1016/0038-0717(95)00104-M10.1016/0038-0717(95)00104-MSuche in Google Scholar
[3] Benstead, J., King, G. M., & Williams, H. G. (1998). Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils. Applied Environmental Microbiology, 64, 1091–1098. DOI: 0099-2240/98/$04.00+0. 10.1128/AEM.64.3.1091-1098.1998Suche in Google Scholar
[4] Berndt, H., Martin, A., Bruckner, A., Schreier, E., Müller, D., Kosslick, H., Wolf, G.-U., & Lücke B. (2000). Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde. Journal of Catalysis, 191, 384–400. DOI: 10.1006/jcat.1999.2786. http://dx.doi.org/10.1006/jcat.1999.278610.1006/jcat.1999.2786Suche in Google Scholar
[5] Brown, M. J., & Parkyns, N. D. (1991). Progress in the partial oxidation of methane to methanol and formaldehyde. Catalysis Today, 8, 305–335. DOI: 10.1016/0920-5861(91)80056-F. http://dx.doi.org/10.1016/0920-5861(91)80056-F10.1016/0920-5861(91)80056-FSuche in Google Scholar
[6] Burch, R., Squire, G. D., & Tsang, S. C. (1989). Direct conversion of methane into methanol. Journal of the Chemical Society, Faraday Transactions 1,85, 3561–3568. DOI: 10.1039/F19898503561. 10.1039/f19898503561Suche in Google Scholar
[7] Dalton, H., Priori, S. D., Leak, D. J., & Stanley, S. H. (1984). Regulation and control of methane monooxygenase. In R. L. Crawford and R. S. Hanson (Eds.), Microbial growth on C 1compounds (pp. 75–82). Washington, D.C.: American Society for Microbiology. Suche in Google Scholar
[8] Feng, W., Knopf, F. C., & Dooley, K. M. (1994). Effects of pressure, third bodies, and temperature profiling on the noncatalytic partial oxidation of methane. Energy & Fuels, 8, 815–1005. DOI: 10.1021/ef00046a001. http://dx.doi.org/10.1021/ef00046a00110.1021/ef00046a001Suche in Google Scholar
[9] Foulds, G. A., Gray, B. F, Miller, S. A., & Walker, G. S. (1993). Homogeneous gas-phase oxidation of methane using oxygen as oxidant in an annular reactor. Industrial & Engineering Chemistry Research, 32, 780–787. DOI: 10.1021/ie00017a003. http://dx.doi.org/10.1021/ie00017a00310.1021/ie00017a003Suche in Google Scholar
[10] Furuto, T., Takeguchi, M., & Okura, I. (1999). Semicontinuous methanol biosynthesis by Methylosinus trichosporium Ob3b. Journal of Molecular Catalysis A: Chemical, 144, 257–261. DOI: 10.1016/S1381-1169(99)00007-2. http://dx.doi.org/10.1016/S1381-1169(99)00007-210.1016/S1381-1169(99)00007-2Suche in Google Scholar
[11] Haggin, J. (1990). Alternative fuels to petroleum gain increased attention. Chemical & Engineering News, 23, 25–27. Suche in Google Scholar
[12] Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiology Review, 60, 439–471. 10.1128/mr.60.2.439-471.1996Suche in Google Scholar PubMed PubMed Central
[13] Harwood, J. H., & Pirt, S. J. (1972). Quantitative aspects of growth of the methane oxidizing bacterium Methylococcus capsulatus on methane in shake flask and continuous chemostat culture. Journal of Applied Bacteriology, 35, 597–607. DOI: 10.1111/j.1365-2672.1972.tb03741.x. 10.1111/j.1365-2672.1972.tb03741.xSuche in Google Scholar
[14] Hunter, N. R., Gesser, H. D., Morton, L. A., Yarlagadda, P. S., & Fung, D. P. C. (1990). Methanol formation at high pressure by the catalyzed oxidation of natural gas and by the sensitized oxidation of methane. Applied Catalysis A: General, 57, 45–54. 10.1016/S0166-9834(00)80722-8. 10.1016/S0166-9834(00)80722-8Suche in Google Scholar
[15] Kudo, H., & Ono, T. (1997). Partial oxidation of CH4 over ZSM-5 catalysts. Applied Surface Science, 121–122. 413–416. DOI: 10.1016/S0169-4332(97)00348-6. http://dx.doi.org/10.1016/S0169-4332(97)00348-610.1016/S0169-4332(97)00348-6Suche in Google Scholar
[16] Lamb, S. C., & Garver, J. C. (1980). Batch- and continuous-culture studies of methane-utilizing mixed culture. Biotechnology & Bioengineering, 22, 2097–2118. DOI: 10.1002/bit.260221009. http://dx.doi.org/10.1002/bit.26022100910.1002/bit.260221009Suche in Google Scholar
[17] Lieberman, R. L., & Rosenzweig, A. C. (2004). Biological methane oxidation: regulation, biochemistry and active site structure of particulate methane monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 39, 147–164. DOI: 10.1080/10409230490475507. http://dx.doi.org/10.1080/1040923049047550710.1080/10409230490475507Suche in Google Scholar
[18] Lipscomb, J. D. (1996). Biochemistry of the soluble methane monooxygenase. Annual Review of Microbiology, 48, 371–399. DOI: 10.1146/annurev.mi.48.100194.002103. http://dx.doi.org/10.1146/annurev.mi.48.100194.00210310.1146/annurev.mi.48.100194.002103Suche in Google Scholar
[19] Maślakiewicz, P., & Steczko J. (1989). Monooksygenaza metanowa — występowanie, właściwości oraz perspektywy wykorzystania w procesach biotechnologicznych. Biotechnologia, 3(4), 56–61. Suche in Google Scholar
[20] Michalkiewicz, B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Applied Catalysis A: General, 277, 147–153. DOI: 10.1016/j.apcata.2004.09.005. http://dx.doi.org/10.1016/j.apcata.2004.09.00510.1016/j.apcata.2004.09.005Suche in Google Scholar
[21] Otsuka, K., & Hatano, M. (1987). The catalysts for the synthesis of formaldehyde by partial oxidation of methane. Journal of Catalysis, 108, 252–255. DOI: 10.1016/0021-9517(87)90172-2. http://dx.doi.org/10.1016/0021-9517(87)90172-210.1016/0021-9517(87)90172-2Suche in Google Scholar
[22] Otsuka, K., & Wang, Y. (2001). Direct conversion of methane into oxygenates. Applied Catalysis A: General, 222, 145–161. DOI: 10.1016/S0926-860X(01)00837-7. http://dx.doi.org/10.1016/S0926-860X(01)00837-710.1016/S0926-860X(01)00837-7Suche in Google Scholar
[23] Patt, T. E., Cole, G. C., Bland, J., & Hanson, R. S. (1974). Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. Journal of Bacteriology, 120, 955–964. 10.1128/jb.120.2.955-964.1974Suche in Google Scholar PubMed PubMed Central
[24] Periana, R. A., Taube, D. J., Gamble, S., Taube, H., Satoh, T., & Fujii, H. (1998). Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science, 280, 560–564. DOI: 10.1126/science.280.5363.560. http://dx.doi.org/10.1126/science.280.5363.56010.1126/science.280.5363.560Suche in Google Scholar
[25] Rytz, D. W., & Baiker, A. (1991). Partial oxidation of methane to methanol in a flow reactor at elevated pressure. Industrial & Engineering Chemistry Research, 30, 2287–2292. DOI: 10.1021/ie00058a007. http://dx.doi.org/10.1021/ie00058a00710.1021/ie00058a007Suche in Google Scholar
[26] Takeguchi, M., & Okura, I. (1999). The role iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Journal of Molecular Catalysis A: Chemical, 137, 161–168. DOI: 10.1016/S1381-1169(98)00123-X. http://dx.doi.org/10.1016/S1381-1169(98)00123-X10.1016/S1381-1169(98)00123-XSuche in Google Scholar
[27] Takeguchi, M., & Okura, I. (2000). Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catalysis Surveys from Japan, 4, 51–63. DOI: 10.1023/A:1019036105038. http://dx.doi.org/10.1023/A:101903610503810.1023/A:1019036105038Suche in Google Scholar
[28] Thomas, D. J., Willi, R., & Baiker, A. (1992). Partial oxidation of methane: the role of surface reactions. Industrial & Engineering Chemistry Research, 31, 2272–2278. DOI: 10.1021/ie00010a003. http://dx.doi.org/10.1021/ie00010a00310.1021/ie00010a003Suche in Google Scholar
[29] Wilkinson, T. G., & Harrison, D. E. (1973). The affinity methane and methanol of mixed cultures grown on methane in continuous culture. Journal of Applied Bacteriology, 36, 309–313. DOI: 10.1111/j.1365-2672.1973.tb04107.x. 10.1111/j.1365-2672.1973.tb04107.xSuche in Google Scholar
[30] Wittenbury, R., Phillips, K. C., & Wilkinson, J. G. (1970). Enrichment isolation and some properties of methane utilizing bacteria. Journal of General Microbiology, 61, 205–218. 10.1099/00221287-61-2-205Suche in Google Scholar
[31] Xin, J. Y., Cui, J. R., Niu, J. Z., Hua, S. F., Xia, C. G., Li, S.B., & Li, M. Z. (2004). Production of methanol from methane by methanotrophic bacteria. Biocatalysis & Biotransformation, 22, 225–229. DOI: 10.1080/10242420412331283305. http://dx.doi.org/10.1080/1024242041233128330510.1080/10242420412331283305Suche in Google Scholar
[32] Yamada, Y., Ueda, A., Shioyama, H., & Kobayashi, T. (2003). High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements. Applied Catalysis A: General, 254, 45–58. DOI: 10.1016/S0926-860X(03)00262-X. http://dx.doi.org/10.1016/S0926-860X(03)00262-X10.1016/S0926-860X(03)00262-XSuche in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
- Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
- Immobilization of modified penicillin G acylase on Sepabeads carriers
- Granulation of activated sludge in a laboratory upflow sludge blanket reactor
- Investigation of the effect of fluid elasticity on a cake filtration process
- Lab-scale testing of a low-loaded activated sludge process with membrane filtration
- Calcium sulphate scaling in membrane distillation process
- Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
- Informational analysis of the grinding process of granular material using a multi-ribbon blender
- Effects of vessel baffling on the drawdown of floating solids
- N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
- Intelligent control of a pH process
- Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
- A three-phase nonequilibrium model for catalytic distillation
- Membrane processes used for separation of effluents from wire productions
- A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
- Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
- Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
- Oxidation of thiophene over copper-manganese mixed oxides
- Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
- Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Artikel in diesem Heft
- Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
- Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
- Immobilization of modified penicillin G acylase on Sepabeads carriers
- Granulation of activated sludge in a laboratory upflow sludge blanket reactor
- Investigation of the effect of fluid elasticity on a cake filtration process
- Lab-scale testing of a low-loaded activated sludge process with membrane filtration
- Calcium sulphate scaling in membrane distillation process
- Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
- Informational analysis of the grinding process of granular material using a multi-ribbon blender
- Effects of vessel baffling on the drawdown of floating solids
- N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
- Intelligent control of a pH process
- Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
- A three-phase nonequilibrium model for catalytic distillation
- Membrane processes used for separation of effluents from wire productions
- A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
- Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
- Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
- Oxidation of thiophene over copper-manganese mixed oxides
- Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
- Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide