Startseite Calcium sulphate scaling in membrane distillation process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Calcium sulphate scaling in membrane distillation process

  • Marek Gryta EMAIL logo
Veröffentlicht/Copyright: 11. Februar 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Formation of precipitates containing CaSO4 during membrane distillation, applied to the concentration of aqueous salt solutions, is discussed in this paper. It was found that the concentration of SO42− ions in such solutions should not exceed 600 mg L−1 when they are subjected to concentration. However, concentration of sulphates at the level of 800 mg L−1 in the feed is permissible provided that the excess of CaSO4 is removed in a crystallizer. Crystallisation of salts, mainly CaSO4 · 2H2O, on the surface and inside the membrane was observed at higher feed concentrations, causing damage of the module. Precipitation of calcium sulphate was also observed during the production of demineralised water when high values of the water recovery coefficient (above 90 %) were used. In this case, the formed precipitate also contained CaCO3, the co-precipitation of which significantly changed the properties of the scaling layer. The precipitate containing both CaSO4 and CaCO3 was formed mainly on the membrane surface and it could easily be removed by rinsing the module with a HCl solution.

[1] Azimi, G., Papangelakis, V. G., & Dutrizac, J. E. (2007). Modelling of calcium sulphate solubility in concentrated multicomponent sulphate solutions. Fluid Phase Equilibria, 260, 300–315. DOI: 10.1016/j.fluid.2007.07.069. http://dx.doi.org/10.1016/j.fluid.2007.07.06910.1016/j.fluid.2007.07.069Suche in Google Scholar

[2] Chong, T. H., & Sheikholeslami, R. (2001). Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation. Chemical Engineering Science, 56, 5391–5400. DOI: 10.1016/S0009-2509(01)00237-8. http://dx.doi.org/10.1016/S0009-2509(01)00237-810.1016/S0009-2509(01)00237-8Suche in Google Scholar

[3] Drioli, E., Criscuoli, A., & Curcio, E. (2002). Integrated membrane operations for seawater desalination. Desalination, 147, 77–81. DOI: 10.1016/S0011-9164(02)00579-9. http://dx.doi.org/10.1016/S0011-9164(02)00579-910.1016/S0011-9164(02)00579-9Suche in Google Scholar

[4] El-Bourawi, M. S., Ding, Z., Ma, R., & Khayet, M. (2006). A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 285, 4–29. DOI: 10.1016/j.memsci.2006.08.002. http://dx.doi.org/10.1016/j.memsci.2006.08.00210.1016/j.memsci.2006.08.002Suche in Google Scholar

[5] Gryta, M. (2002). Direct contact membrane distillation with crystallization applied to NaCl solutions. Chemical Papers, 56, 14–19. Suche in Google Scholar

[6] Gryta, M. (2006). Water purification by membrane distillation process, Separation Science and Technology, 41, 1789–1798. DOI: 10.1080/01496390600674950. http://dx.doi.org/10.1080/0149639060067495010.1080/01496390600674950Suche in Google Scholar

[7] Gryta, M. (2007). Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. Journal of Membrane Science, 287, 67–78. DOI: 10.1016/j.memsci.2006.10.011. http://dx.doi.org/10.1016/j.memsci.2006.10.01110.1016/j.memsci.2006.10.011Suche in Google Scholar

[8] Gryta, M. (2008). Alkaline scaling in the membrane distillation process. Desalination, 228, 128–134. DOI: 10.1016/j.desal.2007.10.004. http://dx.doi.org/10.1016/j.desal.2007.10.00410.1016/j.desal.2007.10.004Suche in Google Scholar

[9] Gryta, M., Karakulski, K., Tomaszewska, M., & Morawski, A. (2005). Treatment of effluents from the regeneration of ion exchangers using the MD process. Desalination, 180, 173–180. DOI: 10.1016/j.desal.2005.01.004. http://dx.doi.org/10.1016/j.desal.2005.01.00410.1016/j.desal.2005.01.004Suche in Google Scholar

[10] Hoang, T. A., Ang, H. M., & Rohl, A. L. (2007). Effects of temperature on the scaling of calcium sulphate in pipes. Powder Technology, 179, 31–37. DOI: 10.1016/j.powtec.2006.11.013. http://dx.doi.org/10.1016/j.powtec.2006.11.01310.1016/j.powtec.2006.11.013Suche in Google Scholar

[11] Karakulski, K., & Gryta, M. (2005). Water demineralisation by NF/MD integrated processes. Desalination, 177, 109–119. DOI: 10.1016/j.desal.2004.11.018. http://dx.doi.org/10.1016/j.desal.2004.11.01810.1016/j.desal.2004.11.018Suche in Google Scholar

[12] Karakulski, K., Gryta, M., & Sasim, M. (2006). Production of process water using integrated membrane processes. Chemical Papers, 60, 416–421. DOI: 10.2478/s11696-006-0076-y. http://dx.doi.org/10.2478/s11696-006-0076-y10.2478/s11696-006-0076-ySuche in Google Scholar

[13] Koyuncu, I., & Wiesner, M. R. (2007). Morphological variations of precipitated salts on NF and RO membranes. Environmental Engineering Science, 24, 602–614. DOI: 10.1089/eee.2006.0114. http://dx.doi.org/10.1089/ees.2006.0114Suche in Google Scholar

[14] Rautenbach, R., & Albrecht, R. (1989). Membrane processes. Chichester: John Wiley. Suche in Google Scholar

[15] Srisurichan, S., Jiraratananon, R., & Fane, A. G. (2006). Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 277, 186–194. DOI: 10.1016/j.memsci.2005.10.028. http://dx.doi.org/10.1016/j.memsci.2005.10.02810.1016/j.memsci.2005.10.028Suche in Google Scholar

[16] Tun, C. M., Fane, A. G., Matheickal, J. T., & Sheikholeslami, R. (2005). Membrane distillation crystallization of concentrated salts - flux and crystal formation. Journal of Membrane Science, 257, 144–155. DOI: 10.1016/j.memsci.2004.09.051. http://dx.doi.org/10.1016/j.memsci.2004.09.05110.1016/j.memsci.2004.09.051Suche in Google Scholar

Published Online: 2009-2-11
Published in Print: 2009-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b
  2. Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate
  3. Immobilization of modified penicillin G acylase on Sepabeads carriers
  4. Granulation of activated sludge in a laboratory upflow sludge blanket reactor
  5. Investigation of the effect of fluid elasticity on a cake filtration process
  6. Lab-scale testing of a low-loaded activated sludge process with membrane filtration
  7. Calcium sulphate scaling in membrane distillation process
  8. Characterization and filtration performance of coating-modified polymeric membranes used in membrane bioreactors
  9. Informational analysis of the grinding process of granular material using a multi-ribbon blender
  10. Effects of vessel baffling on the drawdown of floating solids
  11. N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts
  12. Intelligent control of a pH process
  13. Influence of suspended solid particles on gas-liquid mass transfer coefficient in a system stirred by double impellers
  14. A three-phase nonequilibrium model for catalytic distillation
  15. Membrane processes used for separation of effluents from wire productions
  16. A simple and efficient synthesis of 3-substituted derivatives of pentane-2,4-dione
  17. Formation of hydrated titanium dioxide from seeded titanyl sulphate solution
  18. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts
  19. Oxidation of thiophene over copper-manganese mixed oxides
  20. Study of partitioning and dynamics of metals in contaminated soil using modified four-step BCR sequential extraction procedure
  21. Preparation and properties of a new composite photocatalyst based on nanosized titanium dioxide
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-008-0095-y/pdf?lang=de
Button zum nach oben scrollen